In this work are considered computable numberings [4] of families from various classes Σ^{-1}_α in difference hierarchy [2], where α is computable ordinal number.

It is shown that there are no computable numbering of the family of all sets from class Δ^{-1}_α, where α is computable ordinal number.

Definition. Numbering $\{\nu_n\}_{n \in \omega}$ is called ω-computable, if a set $\{< m, n > | m \in \nu_n\}$ is in class Δ^{-1}_ω.

In work is annonced Theorem. There is a ω-computable minimal numberings of the family of all sets from class $\bigcup_{n \in \omega} \Sigma^{-1}_n$ in difference hierarchy.

In work [3] were proved that for all finite classes in difference hierarchy Σ^{-1}_n there is minimal Friedberg numbering of the family of all sets from Σ^{-1}_n.