Let \models be a relation of consequence, be it defined either semantically or proof-theoretically. As is known, a logic S is paraconsistent iff the ECQ (‘E contradictione quodlibet’) rule $A \land \neg A \models B$ is not a rule of S (cf. [3]).

It is well known that Lewis’ modal logics are not paraconsistent, fact that did not disturb at all this great logician. Far from it, Lewis vindicates the validity of the ECQ rule in a famous proof ([2], p. 250) currently known as the Lewis’ proof or the Lewi’s argument (cf. [1], §16.1). This proof essentially leans on the disjunctive syllogism. The aim of this paper is not to discuss this proof, but the following. Let S_4^+ be the positive fragment of Lewis’ S_4, we define a series of paraconsistent logics included in S_4^+ extended with the double negation axioms, the contraposition axioms, the principle of non-contradiction and the disjunctive syllogism.

Acknowledgements. Work supported by research projects FFI2008-05859/FISO and FFI2008-01205/FISO, financed by the Spanish Ministry of Science and Innovation. G. Robles is currently a Juan de la Cierva researcher at the University of La Laguna.