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Two generalizations [1] of a seminal first-order result determine the possible proper-
ties of a group interpreted by the monster model in an excellent class or in the context
of homogeneous model theory (HMT). The group in question is assumed to carry an
ω-homogeneous pregeometry, and is obtained from the set of realizations of a so-called
quasiminimal type; such a group is called a quasi-minimal group. This result is proved
twice since the existing tools for HMT and for excellent classes are not compatible.
The non-elementary result differs notably from the first-order original in that the pos-
sibility of a non-abelian quasi-minimal group is not ruled out. However, no non-abelian
quasi-minimal group example is known, constituting a major open problem in model
theory.

One can define various kinds of non-well-orderable sets which will exist only in uni-
verses of set theory without the axiom of choice. A set from such a class can serve as
the domain of a structure. Previous research [2, 3] has demonstrated that structures
on such sets can have interesting classification-theoretic properties.

I will discuss structures whose domains belong to one such class: quasi-amorphous
sets. Previous research [4] has shown that quasi-amorphous groups must have prop-
erties very similar to those of quasi-minimal groups. Furthermore, while abelian
quasi-amorphous groups are easy to construct, the existence of a non-abelian quasi-
amorphous group is an open question. Previous research [3] has also shown that quasi-
amorphous structures are characterizable by a complete sentence of an infinitary logic
which only allows statement of countable size. This indicates that quasiamorphous
groups may be best studied as part of a non-elementary model-theoretic context.

This leads to some open questions: Do quasi-amorphous structures fit “naturally”
into any non-elementary context? Is it possible to construct a non-abelian quasi-
amorphous group? Positive answers to these questions may provide a positive res-
olution to the open question concerning the existence of non-abelian quasi-minimal
groups.
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