For any (predicate or propositional) extension of Johansson’s minimal logic is defined, and its equivalence to a weak version of Robinson’s joint consistency is proved. We find some criteria for validity of WIP in extensions of the minimal logic.

Let L be a logic. If $A, B ⊢ ⊥$, then there exists a formula C such that $A ⊢ C$ and $B ⊢ ¬C$, and all the variables of C are in both A and B.

Let L be any axiomatic extension of the minimal logic. An L-theory is a set T closed with respect to $⊢$. An L-theory is consistent if it does not contain $⊥$. The weak Robinson property WRP is defined as follows:

WRP. Let T_1 and T_2 be two L-theories in the languages L_1 and L_2 respectively, $L_0 = L_1 \cap L_2$, $T_{10} = T_1 \cap L_0$. If the set $T_{10} \cup T_{20}$ in the common language is L-consistent, then $T_1 \cup T_2$ is L-consistent.

THEOREM 1. For any (predicate or propositional) extension L of the minimal logic, WIP is equivalent to WRP.

The language of the minimal logic J contains $\&, \lor, \to, \bot$ as primitive; negation is defined by $¬A = A \to \bot$. A formula is said to be positive if contains no occurrences of \bot. The logic J can be given by the calculus, which has the same axiom schemes as the positive intuitionistic calculus, and the only rule of inference is modus ponens. By a J-logic we mean an arbitrary set of formulas containing all the axioms of J and closed under modus ponens and substitution rules. We denote $\text{Int} = J + (\bot \to p)$, $\text{Gl} = J + (p \lor ¬p)$. A J-logic is superintuitionistic if it contains the intuitionistic logic Int, and negative if contains \bot.

THEOREM 2. For any J-logic L the following are equivalent: (1) L has WIP, (2) $L \cap L_1$ has WIP for any negative logic L_1, (3) $L \cap \text{Neg}$ has WIP.

THEOREM 3. Any propositional J-logic containing $J + ¬(\bot \to p)$ possesses WIP.

The problem of weak interpolation is reducible to the same problem over Gl.

THEOREM 4. For any J-logic L, L has WIP if and only if $L + (p \lor ¬p)$ has WIP.

THEOREM 5. There exists a J-logic, which contains $\text{Gl} = J + (p \lor ¬p)$ and does not possess the weak interpolation property.

To prove that we consider two J-algebras B and C. The universe of B consists of four elements $\{a, b, \bot, \top\}$, where $a < b < \bot < \top$. The algebra C consists of five elements $\{c, d, e, \bot, \top\}$, where $e < x < \bot < \top$ for $x \in \{c, d\}$ and the elements c and d are incomparable. Let a J-logic L_1 be the set of all formulas valid in the both algebras B and C. Let

$$A(x, y) = (x \to y) \& ((y \to x) \to x) \& (y \to \bot) \& ((\bot \to y) \to y),$$

$$B(u, w) = ((u \to w) \to w) \& ((w \to u) \to u) \& ((u \lor w) \leftrightarrow \bot).$$

We prove that $A(x, y), B(u, w) ⊢_{L_1} \bot$, but this formula has no interpolant in L_1.

LARISA MAKSIMOVA, *Weak interpolation in extensions of Johansson’s minimal logic.* Sobolev Institute of Mathematics, Siberian Branch of Russian Acad. Sci., 630090 Novosibirsk, Russia.

E-mail: lmaksi@math.nsc.ru.