I will talk about low linear orderings with computable presentation. An X-computable linear ordering is called low, if $X' \leq_T \emptyset'$. C.G. Jockusch and R.I. Soare [5] proved that any noncomputable c.e. degree contains linear ordering with no computable presentation. Therefore, there exists a low linear ordering with no computable copy.

R.G. Downey, M.F. Moses [2] proved that any low discrete linear ordering has a computable copy (a linear ordering is called discrete, if any element has both a successor and a predecessor). It is a natural to ask (R.G. Downey, [1]) — is there a property P of order types which guarantees that if L is low and $P(L)$ then L has a computable presentation?

The author [4] proved that any low strongly η-like linear ordering is isomorphic to a computable one (a linear ordering L is called strongly η-like, if $L \cong \sum_{q \in Q} f(q)$, where $|\text{rang}(f)| < +\infty$). Also the author showed that any low 1-quasidiscrete has a computable copy.

Definition A linear ordering is called k-quasidiscrete, if any equivalence class either is infinite or contains at most k elements, where $x \sim y$ iff there are only finite set of z such that $x \leq_L z \leq_L y$ or $y \leq_L z \leq_L x$.

Theorem Any low k-quasidiscrete linear ordering is a computable presentable ordering.

The author was partially supported by RFBR grant 09-01-97010.

