Homotopy types of definable groups in o-minimal structures

Elías Baro González

Logic Colloquium 2009

Universidad Autónoma de Madrid
July 31th, 2009
Introduction

- We work over a sufficiently saturated o-minimal expansion \mathcal{R} of a real closed field R.

Purpose

Let G and H be d-compact, d-connected definable groups. Then G and H are definable homotopy equivalent if and only if $L(G)$ and $L(H)$ are homotopy equivalent.
Introduction

- We work over a sufficiently saturated o-minimal expansion \mathcal{R} of a real closed field R.
- The positively solution to Pillay’s conjecture provides a canonical functor

$$\mathbb{L} : \{\text{d-compact definable groups}\} \rightarrow \{\text{Compact Real Lie groups}\}$$

$$G \mapsto \mathbb{L}(G) := G/G^{00}.$$
We work over a sufficiently saturated o-minimal expansion \mathcal{R} of a real closed field R.

The positively solution to Pillay’s conjecture provides a canonical functor

$$\mathbb{L} : \{\text{d-compact definable groups}\} \rightarrow \{\text{Compact Real Lie groups}\}$$

$$G \mapsto \mathbb{L}(G) := G/G^{00}.$$

Our aim is to study the homotopic properties of this functor.
Introduction

- We work over a sufficiently saturated o-minimal expansion \mathcal{R} of a real closed field R.
- The positively solution to Pillay’s conjecture provides a canonical functor
 \[\mathbb{L} : \{ \text{d-compact definable groups} \} \rightarrow \{ \text{Compact Real Lie groups} \} \]
 \[G \mapsto \mathbb{L}(G) := G/G^{00}. \]

Our aim is to study the homotopic properties of this functor.

Purpose

Let G and H be d-compact, d-connected definable groups. Then G and H are definable homotopy equivalent if and only if $\mathbb{L}(G)$ and $\mathbb{L}(H)$ are homotopy equivalent.
Let X and Y be semialgebraic sets over R defined without parameters.

Theorem B.-Otero’08

Every definable map $f : X \rightarrow Y$ is definably homotopic to a semialgebraic one (without parameters). Moreover, if two semialgebraic maps (without parameters) are definably homotopic then they are semialgebraically homotopic (without parameters).

Theorem Delfs-Knebusch’85

If $R = R$, every continuous map $f : X \rightarrow Y$ is homotopic to a semialgebraic one defined without parameters. Moreover, if two semialgebraic maps (without parameters) are homotopic then they are semialgebraically homotopic (without parameters).
Background: homotopy comparison theorems

Let X and Y be semialgebraic sets over R defined without parameters.

Theorem B.-Otero’08

Every definable map $f : X \to Y$ is definably homotopic to a semialgebraic one (without parameters). Moreover, if two semialgebraic maps (without parameters) are definably homotopic then they are semialgebraically homotopic (without parameters).

Theorem Delfs-Knebusch’85

If $R = \mathbb{R}$, every continuous map $f : X \to Y$ is homotopic to a semialgebraic one defined without parameters. Moreover, if two semialgebraic maps (without parameters) are homotopic then they are semialgebraically homotopic (without parameters).
Applications

<table>
<thead>
<tr>
<th>Theorem</th>
<th>B.-Otero’08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let X be a semialgebraic set defined without parameters. Then $\pi_n(X)^R \cong \pi_n(X(\mathbb{R}))$ for all $n \geq 1$.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>o-minimal Whitehead theorem</th>
<th>B.-Otero’08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let X and Y be definable sets and let $f : X \to Y$ be a definable map such that $f_* : \pi_n(X)^R \to \pi_n(Y)^R$ is an isomorphism for all $n \geq 0$. Then f is a definable homotopy equivalence.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Berarducci-Mamino-Otero’09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be a definably compact definable group. Then $\pi_n(G)^R \cong \pi_n(\mathbb{L}(G))$ for all $n \geq 1$.</td>
<td></td>
</tr>
</tbody>
</table>
Main results

The latter suggest the following.

Theorem

Let G be a d-compact, d-connected definable group. We assume that its underlying set is a semialgebraic set defined without parameters. Then $G(\mathbb{R})$ is homotopy equivalent to $\mathbb{L}(G)$.

In turn, this implies our purpose.

Corollary

Let G and H be d-compact, d-connected definable groups. Then G and H are definable homotopy equivalent if and only if $\mathbb{L}(G)$ and $\mathbb{L}(H)$ are homotopy equivalent.

For example, if $G \sim_{\text{def}} H$ then $G \sim_{\text{sa}} H$ (without parameters).

Hence $G(\mathbb{R}) \sim_{\text{sa}} H(\mathbb{R})$. Finally, $\mathbb{L}(G) \sim G(\mathbb{R}) \sim_{\text{sa}} H(\mathbb{R}) \sim \mathbb{L}(H)$.
Main results

The latter suggest the following.

Theorem

Let G be a d-compact, d-connected definable group. We assume that its underlying set is a semialgebraic set defined without parameters. Then $G(\mathbb{R})$ is homotopy equivalent to $\mathbb{L}(G)$.

In turn, this implies our purpose.

Corollary

Let G and H be d-compact, d-connected definable groups. Then G and H are definable homotopy equivalent if and only if $\mathbb{L}(G)$ and $\mathbb{L}(H)$ are homotopy equivalent.
Main results

The latter suggest the following.

Theorem

Let G be a d-compact, d-connected definable group. We assume that its underlying set is a semialgebraic set defined without parameters. Then $G(\mathbb{R})$ is homotopy equivalent to $\mathbb{L}(G)$.

In turn, this implies our purpose.

Corollary

Let G and H be d-compact, d-connected definable groups. Then G and H are definable homotopy equivalent if and only if $\mathbb{L}(G)$ and $\mathbb{L}(H)$ are homotopy equivalent.

For example, if $G \sim_{\text{def}} H$ then $G \sim_{sa} H$ (without parameters). Hence $G(\mathbb{R}) \sim_{sa} H(\mathbb{R})$. Finally,

$$\mathbb{L}(G) \sim G(\mathbb{R}) \sim_{sa} H(\mathbb{R}) \sim \mathbb{L}(H).$$
Main result

Theorem

Let G be a d-compact, d-connected definable group. We assume that its underlying set is a semialgebraic set defined without parameters. Then $G(\mathbb{R})$ is homotopy equivalent to $\mathbb{L}(G)$.

In two special cases the theorem was already proved:

- If G is abelian (by Berarducci-Mamino-Otero'08)
- If G is semisimple (by Edmundo-Jones-Peatfield'09)
Main result

Theorem

Let G be a d-compact, d-connected definable group. We assume that its underlying set is a semialgebraic set defined without parameters. Then $G(\mathbb{R})$ is homotopy equivalent to $\mathbb{L}(G)$.

In two special cases the theorem was already proved:

- If G is abelian (by Berarducci-Mamino-Otero’08)
- If G is semisimple (by Edmundo-Jones-Peatfield’09)
General case

We fix G a d-compact, d-connected definable group.
We fix G a d-compact, d-connected definable group. To prove the general case we need a recent structural result...

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Hrushovski, Peterzil, Pillay’09</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G' := [G, G]$ is a definably connected, semisimple definable subgroup of G. Moreover,</td>
<td></td>
</tr>
<tr>
<td>$p : Z(G)^0 \times G' \to G : (x, y) \mapsto xy,$</td>
<td></td>
</tr>
<tr>
<td>is a surjective homomorphism with finite kernel.</td>
<td></td>
</tr>
</tbody>
</table>

...and a classical result concerning compact Lie groups.

<table>
<thead>
<tr>
<th>Theorem</th>
<th>A.Borel’61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let H be compact, connected Real Lie group. Then H is homeomorphic to $Z(H)^0 \times H'$.</td>
<td></td>
</tr>
</tbody>
</table>
General case

Proposition

G is definable homotopy equivalent to $\mathbb{T}_R^n \times G'$, where $n = dim(Z(G)^0)$. This is enough because...
General case

Proposition

G is definable homotopy equivalent to $\mathbb{T}_R^n \times G'$, where $n = \text{dim}(Z(G)^0)$.

This is enough because...

\[
\mathbb{L}(G) \simeq \mathbb{L}(Z(G)^0) \times \mathbb{L}(G') \simeq \mathbb{T}_R^n \times G'(\mathbb{R}) \sim G(\mathbb{R})
\]
Proof of the proposition

Since $\pi_1(G)^\mathcal{R} \cong \pi_1(T^n_\mathbb{R}) \times \pi_1(L(G)')$ we have that

$$\pi_1(G)^\mathcal{R} / \text{Tor}(\pi_1(G)^\mathcal{R}) \cong \mathbb{Z}^n.$$
Proof of the proposition

Since $\pi_1(G)^R \cong \pi_1(\mathbb{T}_R^n) \times \pi_1(\mathbb{L}(G)')$, we have that

$$\pi_1(G)^R / \text{Tor}(\pi_1(G)^R) \cong \mathbb{Z}^n.$$

Take $\gamma_1, \ldots, \gamma_n : I \to G$ definable curves such that

$$[\gamma_1] + \text{Tor}(\pi_1(G)), \ldots, [\gamma_n] + \text{Tor}(\pi_1(G)),$$

freely generate the group $\pi_1(G)/\text{Tor}(\pi_1(G))$.

Proof of the proposition

Since $\pi_1(G)^R \cong \pi_1(\mathbb{T}_R^n) \times \pi_1(\mathbb{L}(G))'$ we have that

$$\pi_1(G)^R / \text{Tor}(\pi_1(G)^R) \cong \mathbb{Z}^n.$$

Take $\gamma_1, \ldots, \gamma_n : I \rightarrow G$ definable curves such that

$$[\gamma_1] + \text{Tor}(\pi_1(G)), \ldots, [\gamma_n] + \text{Tor}(\pi_1(G)),$$

freely generate the group $\pi_1(G)/\text{Tor}(\pi_1(G))$. Consider the definable map,

$$f : \mathbb{T}_R^n \times G' \rightarrow G : (t_1, \ldots, t_n, g) \mapsto \gamma_1(t_1) \cdots \gamma_n(t_n)g.$$

f is a definable homotopy equivalence

