Eventually different forcing and inaccessible cardinals

Benedikt Löwe

joint work with Jörg Brendle, Kobe (Japan)

Logic Colloquium 2009
Sofia, Bulgaria
Friday, 31 July 2009
Characterisation of regularity properties in terms of generic reals (1).
Characterisation of regularity properties in terms of generic reals (1).

Theorem (Solovay). $\text{LM}(\Sigma^1_2)$ if and only if for every x, the set of random reals over $L[x]$ is a measure one set.

Solovay-style characterization theorem
Characterisation of regularity properties in terms of generic reals (1).

Theorem (Solovay). $\text{LM}(\Sigma^1_2)$ if and only if for every x, the set of random reals over $L[x]$ is a measure one set.

Solovay-style characterization theorem

Theorem (Judah-Shelah). $\text{LM}(\Delta^1_2)$ if and only if for every x, there is a random real over $L[x]$.

Judah-Shelah-style characterization theorem
Characterisation of regularity properties in terms of generic reals (1).

Theorem (Solovay). $\text{LM}(\Sigma^1_2)$ if and only if for every x, the set of random reals over $L[x]$ is a measure one set.

Solovay-style characterization theorem

Theorem (Judah-Shelah). $\text{LM}(\Delta^1_2)$ if and only if for every x, there is a random real over $L[x]$.

Judah-Shelah-style characterization theorem

Remember that a real is random over M if and only if it is not a member of any measure zero Borel set with a Borel code in M.
Characterisation of regularity properties in terms of generic reals (1).

Theorem (Solovay). \(\text{LM}(\Sigma^1_2) \) if and only if for every \(x \), the set of random reals over \(\text{L}[x] \) is a measure one set.

Solovay-style characterization theorem

Theorem (Judah-Shelah). \(\text{LM}(\Delta^1_2) \) if and only if for every \(x \), there is a random real over \(\text{L}[x] \).

Judah-Shelah-style characterization theorem

Remember that a real is random over \(M \) if and only if it is not a member of any measure zero Borel set with a Borel code in \(M \).

Corollary. If \(\omega_1 \) is inaccessible by reals, then \(\text{LM}(\Sigma^1_2) \).
Characterisation of regularity properties in terms of generic reals (1).

Theorem (Solovay). $\text{LM}(\Sigma^1_2)$ if and only if for every x, the set of random reals over $L[x]$ is a measure one set.

Solovay-style characterization theorem

Theorem (Judah-Shelah). $\text{LM}(\Delta^1_2)$ if and only if for every x, there is a random real over $L[x]$.

Judah-Shelah-style characterization theorem

Remember that a real is random over M if and only if it is not a member of any measure zero Borel set with a Borel code in M.

Corollary. If ω_1 is inaccessible by reals, then $\text{LM}(\Sigma^1_2)$.

Corollary. In the ω_1-iteration of random forcing, $\text{LM}(\Delta^1_2)$ holds.
Generalisations.
Generalisations.

Even more generally, a forcing notion \mathbb{P} defines an ideal $\mathcal{I}_\mathbb{P}$, a corresponding notion of measurability, and a notion of genericity. We write $\text{Meas}_\mathbb{P}(\Gamma)$ for “all sets in Γ are \mathbb{P}-measurable”.

A false hope:

- $\text{Meas}_\mathbb{P}(\Sigma_1^2)$ if and only if for every x, the set of \mathbb{P}-generics over $L[x]$ is co-$\mathcal{I}_\mathbb{P}$. (“Solovay Theorem”)

- $\text{Meas}_\mathbb{P}(\Delta_1^2)$ if and only if for every x, there is a \mathbb{P}-generic over $L[x]$. (“Judah-Shelah Theorem”)

It will turn out that these are not true in general, and a refinement is necessary.
Even more generally, a forcing notion \mathbb{P} defines an ideal $\mathcal{I}_\mathbb{P}$, a corresponding notion of measurability, and a notion of genericity. We write $\text{Meas}_\mathbb{P}(\Gamma)$ for “all sets in Γ are \mathbb{P}-measurable”.

A false hope:

- $\text{Meas}_\mathbb{P}(\Sigma^1_2)$ if and only if for every x, the set of \mathbb{P}-generics over $L[x]$ is co-$\mathcal{I}_\mathbb{P}$. (“Solovay Theorem”)
- $\text{Meas}_\mathbb{P}(\Delta^1_2)$ if and only if for every x, there is a \mathbb{P}-generic over $L[x]$. (“Judah-Shelah Theorem”)

It will turn out that these are not true in general, and a refinement is necessary.
Generalisations.

Even more generally, a forcing notion \mathbb{P} defines an ideal $\mathcal{I}_\mathbb{P}$, a corresponding notion of measurability, and a notion of genericity. We write $\text{Meas}_\mathbb{P}(\Gamma)$ for “all sets in Γ are \mathbb{P}-measurable”.

A false hope:

- $\text{Meas}_\mathbb{P}(\Sigma^1_2)$ if and only if for every x, the set of \mathbb{P}-generics over $L[x]$ is co-$\mathcal{I}_\mathbb{P}$. (“Solovay Theorem”)
- $\text{Meas}_\mathbb{P}(\Delta^1_2)$ if and only if for every x, there is a \mathbb{P}-generic over $L[x]$. (“Judah-Shelah Theorem”)

It will turn out that these are not true in general, and a refinement is necessary.
A concrete example: Hechler forcing
A concrete example: Hechler forcing

The conditions of Hechler forcing define a topology called the dominating topology. We call a set \(\mathcal{D} \)-measurable if it has the Baire property in the dominating topology and let the ideal \(\mathcal{I}_\mathcal{D} \) be the set of all sets meager in the dominating topology.
A concrete example: Hechler forcing

The conditions of Hechler forcing define a topology called the dominating topology. We call a set D-measurable if it has the Baire property in the dominating topology and let the ideal I_D be the set of all sets meager in the dominating topology. Again, a real is Hechler over M if it is not an element of any Borel set meager in the dominating topology and coded in M.
A concrete example: Hechler forcing

The conditions of Hechler forcing define a topology called the dominating topology. We call a set \mathbb{D}-measurable if it has the Baire property in the dominating topology and let the ideal $\mathcal{I}_\mathbb{D}$ be the set of all sets meager in the dominating topology. Again, a real is Hechler over \mathcal{M} if it is not an element of any Borel set meager in the dominating topology and coded in \mathcal{M}.

Theorem (Brendle-L. 1998). The following are equivalent:

- $\text{Meas}_\mathbb{D}(\Sigma^1_2)$,
- for every x, the set of Hechler reals over $\mathcal{L}[x]$ is co-meager in the dominating topology,
A concrete example: Hechler forcing

The conditions of Hechler forcing define a topology called the **dominating topology**. We call a set \(\mathbb{D} \)-measurable if it has the Baire property in the dominating topology and let the ideal \(\mathcal{I}_\mathbb{D} \) be the set of all sets meager in the dominating topology. Again, a real is **Hechler** over \(M \) if it is not an element of any Borel set meager in the dominating topology and coded in \(M \).

Theorem (Brendle-L. 1998). The following are equivalent:

- Meas\(\mathbb{D} (\Sigma^1_2) \),
- for every \(x \), the set of Hechler reals over \(L[x] \) is co-meager in the dominating topology,
- \(\omega_1 \) is inaccessible by reals.
A concrete example: Hechler forcing

The conditions of Hechler forcing define a topology called the dominating topology. We call a set \mathbb{D}-measurable if it has the Baire property in the dominating topology and let the ideal $\mathcal{I}_\mathbb{D}$ be the set of all sets meager in the dominating topology. Again, a real is Hechler over M if it is not an element of any Borel set meager in the dominating topology and coded in M.

Theorem (Brendle-L. 1998). The following are equivalent:

\triangleright Meas$_\mathbb{D}(\Sigma^1_2)$,

\triangleright for every x, the set of Hechler reals over $L[x]$ is co-meager in the dominating topology,

\triangleright ω_1 is inaccessible by reals.

Theorem (Brendle-L. 1998). The following are equivalent:

\triangleright Meas$_\mathbb{D}(\Delta^1_2)$,

\triangleright for every x, there is a Hechler real over $L[x]$,

\triangleright BP(Σ^1_2).
A diagram of implications

$\Sigma^1_2(\mathbb{D})$

$\Sigma^1_2(\mathbb{B}) = \Delta^1_2(\mathbb{A})$

$\Sigma^1_2(\mathbb{R}) = \Delta^1_2(\mathbb{R})$

$\Sigma^1_2(\mathbb{C}) = \Delta^1_2(\mathbb{D})$

$\Sigma^1_2(\mathbb{L}) = \Delta^1_2(\mathbb{L})$

$\Sigma^1_2(\mathbb{C})$

$\Sigma^1_2(\mathbb{V})$

$\Delta^1_2(\mathbb{C})$

$\Sigma^1_2(\mathbb{V})$

$\Delta^1_2(\mathbb{V})$

$\Sigma^1_2(\mathbb{M}) = \Delta^1_2(\mathbb{M})$

$\Sigma^1_2(\mathbb{S}) = \Delta^1_2(\mathbb{S})$

$\Delta^1_2(\mathbb{B})$

ev. diff.
Eventually different forcing consists of pairs $\langle s, F \rangle$, where $s \in \omega^{<\omega}$ and F is a finite set of reals.
Eventually different forcing (1).

Eventually different forcing \mathbb{E} consists of pairs $\langle s, F \rangle$, where $s \in \omega^{<\omega}$ and F is a finite set of reals with

$$\langle s, F \rangle \leq \langle t, G \rangle \text{ iff } t \subseteq s, G \subseteq F, \text{ and }$$

$$\forall i \in \text{dom}(s \setminus t) \forall g \in G (s(i) \neq g(i)).$$
Eventually different forcing (1).

Eventually different forcing \mathbb{E} consists of pairs $\langle s, F \rangle$, where $s \in \omega^{\lt \omega}$ and F is a finite set of reals with

$$\langle s, F \rangle \leq \langle t, G \rangle \quad \text{iff} \quad t \subseteq s, \ G \subseteq F, \ \text{and} \ \forall i \in \text{dom}(s \setminus t) \ \forall g \in G(s(i) \neq g(i)).$$

Eventually different forcing is a c.c.c. forcing that generates the eventually different topology refining the standard topology on Baire space.

Proposition (Labędzki 1997). The meager sets in the eventually different topology form an ideal I_E which has a basis of Borel sets.

Theorem (Labędzki 1997). A real x is E-generic over M if and only if it is E-quasigeneric over M.
Eventually different forcing (1).

Eventually different forcing \mathbb{E} consists of pairs $\langle s, F \rangle$, where $s \in \omega^{<\omega}$ and F is a finite set of reals with

$$\langle s, F \rangle \leq \langle t, G \rangle \text{ iff } t \subseteq s, \ G \subseteq F, \text{ and } \forall i \in \text{dom}(s \setminus t) \forall g \in G(s(i) \neq g(i)).$$

Eventually different forcing is a c.c.c. forcing that generates the eventually different topology refining the standard topology on Baire space.

Proposition (Łabędzki 1997). The meager sets in the eventually different topology form an ideal $\mathcal{I}_\mathbb{E}$ which has a basis of Borel sets.
Eventually different forcing \(\mathbb{E} \) consists of pairs \(\langle s, F \rangle \), where \(s \in \omega^{<\omega} \) and \(F \) is a finite set of reals with

\[
\langle s, F \rangle \leq \langle t, G \rangle \quad \text{iff} \quad t \subseteq s, \ G \subseteq F, \ \text{and} \ \forall i \in \text{dom}(s \setminus t) \forall g \in G (s(i) \neq g(i)).
\]

Eventually different forcing is a c.c.c. forcing that generates the \textit{eventually different topology} refining the standard topology on Baire space.

Proposition (Łabędzki 1997). The meager sets in the \textit{eventually different topology} form an ideal \(\mathcal{I}_\mathbb{E} \) which has a basis of Borel sets.

Theorem (Łabędzki 1997). A real \(x \) is \(\mathbb{E} \)-generic over \(M \) if and only if it is \(\mathbb{E} \)-quasigeneric over \(M \).
Eventually different forcing (2).

Let $\langle f_\alpha ; \alpha < \omega_1 \rangle$ be a family of eventually different functions.

Let $E_\alpha := \{ x \in \omega_\omega ; \exists \infty k \in \omega (x(k) = f_\alpha(k)) \}$.

These sets are nowhere dense in the eventually different topology.

Theorem (Brendle). If G is meager in the eventually different topology and $\langle f_\alpha ; \alpha < \omega_1 \rangle$ a family of eventually different functions then the set $\{ \alpha ; E_\alpha \subseteq G \}$ is countable.

Corollary (Labędzki). The additivity of I_D is \aleph_1.
Let $\langle f_\alpha; \alpha < \omega_1 \rangle$ be a family of eventually different functions. Let
\[
E_\alpha := \{ x \in \omega^\omega; \exists \infty k \in \omega (x(k) = f_\alpha(k)) \}.
\]
Eventually different forcing (2).

Let $\langle f_\alpha; \alpha < \omega_1 \rangle$ be a family of eventually different functions. Let

$$E_\alpha := \{ x \in \omega^\omega; \exists^\infty k \in \omega (x(k) = f_\alpha(k)) \}.$$

These sets are nowhere dense in the eventually different topology.
Eventually different forcing (2).

Let $\langle f_\alpha; \alpha < \omega_1 \rangle$ be a family of eventually different functions. Let

$$E_\alpha := \{ x \in \omega^\omega; \exists \infty k \in \omega (x(k) = f_\alpha(k)) \}.$$

These sets are nowhere dense in the eventually different topology.

Theorem (Brendle). If G is meager in the eventually different topology and $\langle f_\alpha; \alpha < \omega_1 \rangle$ a family of eventually different functions then the set $\{ \alpha; E_\alpha \subseteq G \}$ is countable.
Eventually different forcing (2).

Let $\langle f_\alpha; \alpha < \omega_1 \rangle$ be a family of eventually different functions. Let

$$E_\alpha := \{x \in \omega^\omega; \exists^\infty k \in \omega (x(k) = f_\alpha(k))\}.$$

These sets are nowhere dense in the eventually different topology.

Theorem (Brendle). If G is meager in the eventually different topology and $\langle f_\alpha; \alpha < \omega_1 \rangle$ a family of eventually different functions then the set $\{ \alpha; E_\alpha \subseteq G \}$ is countable.

Corollary (Łąbędzki). The additivity of $\mathcal{I}_\mathcal{D}$ is \aleph_1.
Ikegami’s abstract Solovay and Judah-Shelah theorems (1).

Definition (Brendle-Halbeisen-L.-Ikegami). A real \(x \) is \(P \)-quasigeneric over \(M \) if for all Borel codes \(c \in M \) such that \(B_c \in \mathcal{I}_P^* \), we have that \(r \notin B_c \). Here,

\[
\mathcal{I}_P^* := \{ X ; \forall T \in P \exists S \in P (S \leq T \land [S] \cap X \in \mathcal{I}_P) \}.
\]
Ikegami’s abstract Solovay and Judah-Shelah theorems (1).

Definition (Brendle-Halbeisen-L.-Ikegami). A real x is P-quasigeneric over M if for all Borel codes $c \in M$ such that $B_c \in I^*_P$, we have that $r \notin B_c$. Here,

$$I^*_P := \{ X ; \forall T \in P \exists S \in P (S \leq T \land [S] \cap X \in I_P) \}.$$

For random, Cohen and Hechler reals, being generic is equivalent to being quasigeneric.
Eventually different forcing and inaccessible cardinals

Ikegami’s abstract Solovay and Judah-Shelah theorems (1).

Definition (Brendle-Halbeisen-L.-Ikegami). A real x is P-quasigeneric over M if for all Borel codes $c \in M$ such that $B_c \in I^*_P$, we have that $r \notin B_c$. Here,

$$I^*_P := \{ X ; \forall T \in P \exists S \in P (S \leq T \land [S] \cap X \in I_P) \}.$$

For random, Cohen and Hechler reals, being generic is equivalent to being quasigeneric.

Abstract Judah-Shelah Theorem (Ikegami 2007). If P is a proper and strongly arboreal forcing notion such that $\{c ; c$ is a Borel code and $B_c \in I^*_P\}$ is Σ^1_2, then the following are equivalent:

1. Σ^1_3-P-absoluteness,
2. every Δ^1_2 set is P-measurable, and
3. for every real x and every $T \in P$, there is a I^*_P-quasigeneric real in $[T]$ over $L[x]$.
Ikegami’s abstract Solovay and Judah-Shelah theorems (2).
Ikegami’s abstract Solovay and Judah-Shelah theorems (2).

Abstract Solovay Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c ; c$ is a Borel code and $B_c \in \mathcal{I}_\mathbb{P}^*\}$ is Σ^1_2 and $\mathcal{I}_\mathbb{P}$ is Borel generated, then the following are equivalent:

1. every Σ^1_2 set is \mathbb{P}-measurable, and
2. for every real x, the set $\{y ; y$ is not $\mathcal{I}_\mathbb{P}^*$-quasigeneric over $L[x]\}$ belongs to $\mathcal{I}_\mathbb{P}^*$.
A Solovay theorem for E.

Abstract Solovay Theorem (Ikegami 2007). If P is a proper and strongly arboreal forcing notion such that

\[\{ c ; c \text{ is a Borel code and } B_c \in I^*P \} \]

is Σ^1_2 and I^*P is Borel generated, then the following are equivalent:

1. every Σ^1_2 set is P-measurable, and
2. for every real x, the set

\[\{ y ; y \text{ is not } I^*P \text{-quasigeneric over } L[x] \} \]

belongs to I^*P.

Theorem. The following are equivalent:

1. $\text{Meas}_{E}(\Sigma^1_2)$ and
2. for every x, the set of E-generics over $L[x]$ is comeager in the eventually different topology.

3. ω_1 is inaccessible by reals.
A Solovay theorem for \mathbb{E}.

Abstract Solovay Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c ; c$ is a Borel code and $B_c \in I_P^*\}$ is Σ^1_2 and I_P is Borel generated, then the following are equivalent:

1. every Σ^1_2 set is \mathbb{P}-measurable, and
2. for every real x, the set $\{y ; y$ is not I_P^*-quasigeneric over $L[x]\}$ belongs to I_P^*.
A Solovay theorem for E.

Abstract Solovay Theorem (Ikegami 2007). If P is a proper and strongly arboreal forcing notion such that $\{c; c$ is a Borel code and $B_c \in I_P^*\}$ is Σ^1_2 and I_P is Borel generated, then the following are equivalent:

1. every Σ^1_2 set is P-measurable, and
2. for every real x, the set $\{y; y$ is not I_P^*-quasigeneric over $L[x]\}$ belongs to I_P^*.

Theorem. The following are equivalent:

1. $\text{Meas}_E(\Sigma^1_2)$ and
2. for every x, the set of E-generics over $L[x]$ is comeager in the eventually different topology.
A Solovay theorem for \mathcal{E}.

Abstract Solovay Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c ; c \text{ is a Borel code and } B_c \in \mathcal{I}_P^*\}$ is Σ^1_2 and \mathcal{I}_P is Borel generated, then the following are equivalent:

1. every Σ^1_2 set is \mathbb{P}-measurable, and
2. for every real x, the set $\{y ; y \text{ is not } \mathcal{I}_P^*\text{-quasigeneric over } L[x]\}$ belongs to \mathcal{I}_P^*.

Theorem. The following are equivalent:

1. $\text{Meas}_E(\Sigma^1_2)$ and
2. for every x, the set of E-generics over $L[x]$ is comeager in the eventually different topology.
3. ω_1 is inaccessible by reals.
The Diagram again

\[\Sigma_2^1(\mathcal{D}) \]

\[\Sigma_2^1(\mathcal{B}) = \Delta_2^1(\mathcal{A}) \]

\[\Sigma_2^1(\mathcal{R}) = \Delta_2^1(\mathcal{R}) \]

\[\Sigma_2^1(\mathcal{C}) = \Delta_2^1(\mathcal{D}) \]

\[\Sigma_2^1(\mathcal{L}) = \Delta_2^1(\mathcal{L}) \]

\[\Delta_2^1(\mathcal{C}) \]

\[\Sigma_2^1(\mathcal{V}) \]

\[\Delta_2^1(\mathcal{V}) \]

\[\Sigma_2^1(\mathcal{M}) = \Delta_2^1(\mathcal{M}) \]

\[\Delta_2^1(\mathcal{V}) \]

\[\Sigma_2^1(\mathcal{S}) = \Delta_2^1(\mathcal{S}) \]

\[\text{ev. diff.} \]
The Diagram again

\[\Sigma_2^1(E) = \Sigma_2^1(D) \]

\[\Sigma_2^1(B) = \Delta_2^1(A) \]

\[\Sigma_2^1(R) = \Delta_2^1(R) \]

\[\Sigma_2^1(C) = \Delta_2^1(D) \]

\[\Delta_2^1(B) \]

\[\Sigma_2^1(L) = \Delta_2^1(L) \]

\[\Delta_2^1(C) \]

\[\Sigma_2^1(V) \]

\[\Sigma_2^1(M) = \Delta_2^1(M) \]

\[\Delta_2^1(V) \]

\[\Sigma_2^1(S) = \Delta_2^1(S) \]

\[\text{ev. diff.} \]
A Judah-Shelah theorem for E.

Abstract Judah-Shelah Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that \{c ; c is a Borel code and $B_c \in \mathcal{I}_\mathbb{P}^*$\} is Σ^1_2, then the following are equivalent:

1. Σ^1_3-\mathbb{P}-absoluteness,
2. every Δ^1_2 set is \mathbb{P}-measurable, and
3. for every real x and every $T \in \mathbb{P}$, there is a $\mathcal{I}_{\mathbb{P}}^*$-quasigeneric real in $[T]$ over $L[x]$.

Theorem. The following are equivalent:

1. $\text{Meas}_{E}(\Delta^1_2)$, and
2. for every x, there is an E-generic over $L[x]$.

A Judah-Shelah theorem for E.

Abstract Judah-Shelah Theorem (Ikegami 2007). If P is a proper and strongly arboreal forcing notion such that $\{c ; c \text{ is a Borel code and } B_c \in I_P^* \}$ is Σ_2^1, then the following are equivalent:

1. Σ_3^1-P-absoluteness,
2. every Δ_2^1 set is P-measurable, and
3. for every real x and every $T \in P$, there is a I_P^*-quasigeneric real in $[T]$ over $L[x]$.

Theorem. The following are equivalent:

1. $\text{Meas}_E(\Delta_2^1)$, and
2. for every x, there is an E-generic over $L[x]$.
Locating $\Delta^1_2(\mathcal{E})$
Locating $\Delta^1_2(E)$

- The ω_1-iteration of E produces a model of $\text{Meas}_E(\Delta^1_2)$ without dominating or random reals, therefore $\text{LM}(\Delta^1_2)$ and $\text{Meas}_L(\Delta^1_2)$ are false there.
Locating $\Delta^1_2(E)$

- The ω_1-iteration of E produces a model of $\text{Meas}_E(\Delta^1_2)$ without dominating or random reals, therefore $\text{LM}(\Delta^1_2)$ and $\text{Meas}_L(\Delta^1_2)$ are false there.

- In the ω_1-iteration of Cohen forcing, we do not have an eventually different real. In particular, $\text{Meas}_E(\Delta^1_2)$ is false.
Locating $\Delta_2^1(E)$

- The ω_1-iteration of E produces a model of $\text{Meas}_E(\Delta_2^1)$ without dominating or random reals, therefore $\text{LM}(\Delta_2^1)$ and $\text{Meas}_L(\Delta_2^1)$ are false there.

- In the ω_1-iteration of Cohen forcing, we do not have an eventually different real. In particular, $\text{Meas}_E(\Delta_2^1)$ is false.

- Every E-generic is also Cohen generic, so $\text{Meas}_E(\Delta_2^1)$ implies $\text{BP}(\Delta_2^1)$.
Locating $\Delta^1_2(\mathbb{E})$

- The ω_1-iteration of \mathbb{E} produces a model of $\text{Meas}_\mathbb{E}(\Delta^1_2)$ without dominating or random reals, therefore $\text{LM}(\Delta^1_2)$ and $\text{Meas}_\mathbb{L}(\Delta^1_2)$ are false there.

- In the ω_1-iteration of Cohen forcing, we do not have an eventually different real. In particular, $\text{Meas}_\mathbb{E}(\Delta^1_2)$ is false.

- Every \mathbb{E}-generic is also Cohen generic, so $\text{Meas}_\mathbb{E}(\Delta^1_2)$ implies $\text{BP}(\Delta^1_2)$.

- Since the ω_1-iteration of random forcing does not add Cohen reals, $\text{Meas}_\mathbb{E}(\Delta^1_2)$ is false there.
Locating $\Delta^1_2(E)$

- The ω_1-iteration of E produces a model of $\text{Meas}_E(\Delta^1_2)$ without dominating or random reals, therefore $\text{LM}(\Delta^1_2)$ and $\text{Meas}_L(\Delta^1_2)$ are false there.

- In the ω_1-iteration of Cohen forcing, we do not have an eventually different real. In particular, $\text{Meas}_E(\Delta^1_2)$ is false.

- Every E-generic is also Cohen generic, so $\text{Meas}_E(\Delta^1_2)$ implies $\text{BP}(\Delta^1_2)$.

- Since the ω_1-iteration of random forcing does not add Cohen reals, $\text{Meas}_E(\Delta^1_2)$ is false there.

- **Dichotomy for iterated Hechler forcing.** Any real in a finite support iteration of Hechler forcing is either dominating or not eventually different over the ground model.
Locating $\Delta_2^1(E)$

- The ω_1-iteration of E produces a model of $\text{Meas}_E(\Delta_2^1)$ without dominating or random reals, therefore $\text{LM}(\Delta_2^1)$ and $\text{Meas}_L(\Delta_2^1)$ are false there.
- In the ω_1-iteration of Cohen forcing, we do not have an eventually different real. In particular, $\text{Meas}_E(\Delta_2^1)$ is false.
- Every E-generic is also Cohen generic, so $\text{Meas}_E(\Delta_2^1)$ implies $\text{BP}(\Delta_2^1)$.
- Since the ω_1-iteration of random forcing does not add Cohen reals, $\text{Meas}_E(\Delta_2^1)$ is false there.
- **Dichotomy for iterated Hechler forcing.** Any real in a finite support iteration of Hechler forcing is either dominating or not eventually different over the ground model.

Corollary. In the ω_1-finite support iteration of Hechler forcing, $\text{Meas}_E(\Delta_2^1)$ fails.
The final diagram

\[\Sigma_2^1(E) = \Sigma_2^1(D) \]

\[\Sigma_2^1(B) = \Delta_2^1(A) \]

\[\Sigma_2^1(R) = \Delta_2^1(R) \]

\[\Sigma_2^1(C) = \Delta_2^1(D) \]

\[\Sigma_2^1(L) = \Delta_2^1(L) \]

\[\Sigma_2^1(M) = \Delta_2^1(M) \]

\[\Sigma_2^1(S) = \Delta_2^1(S) \]

\[\Sigma_2^1(V) = \Delta_2^1(V) \]

\[\Delta_2^1(B) \]

ev. diff.
The final diagram

\[\Sigma_2^1(E) = \Sigma_2^1(D) \]

\[\Sigma_2^1(B) = \Delta_2^1(A) \]

\[\Sigma_2^1(R) = \Delta_2^1(R) \]

\[\Sigma_2^1(C) = \Delta_2^1(D) \]

\[\Delta_2^1(E) \]

\[\Delta_2^1(B) \]

\[\Sigma_2^1(L) = \Delta_2^1(L) \]

\[\Delta_2^1(C) \]

\[\Sigma_2^1(V) \]

\[\Delta_2^1(V) \]

\[\Sigma_2^1(M) = \Delta_2^1(M) \]

\[\Sigma_2^1(S) = \Delta_2^1(S) \]

\[\Sigma_2^1(L) \]

\[\Delta_2^1(C) \]

\[\Delta_2^1(V) \]

\[\Sigma_2^1(V) \]

\[\Delta_2^1(V) \]

\[\Sigma_2^1(M) \]

\[\Delta_2^1(M) \]

\[\Sigma_2^1(S) = \Delta_2^1(S) \]

\[\Sigma_2^1(L) \]

\[\Delta_2^1(C) \]

\[\Delta_2^1(V) \]

\[\Sigma_2^1(V) \]

\[\Delta_2^1(V) \]

\[\Sigma_2^1(M) \]

\[\Delta_2^1(M) \]

\[\Sigma_2^1(S) = \Delta_2^1(S) \]