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Ramsey’s theorem for trees

Let T = 2<“. We write [T]" for the collection of linearly ordered
n-tuples of nodes (n-chains) from T.

A subset S C T is a subtree isomorphic to T if it has a least node, and
every node in S has exactly two immediate successors in S.
Theorem (T7))

Suppose [T]" is colored with k colors. Then there is a subtree S
isomorphic to T such that[S]" is monochromatic.
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Reverse math

@ RCAy + X%-IND proves Vk TT,'.
2 K
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» TT, implies the infinite pigeonhole principle, which is strictly weaker
than Z3-IND.
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» [Corduan, Groszek, & Mileti, 2009] TT} is properly stronger that
the infinite pigeonhole principle.
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» ACA, is equivalentto 77 forn> 3 and k > 2.
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Reverse math

@ RCAy + x3-IND proves Vk TT,.

> TT,J implies the infinite pigeonhole principle, which is strictly weaker
than £3-IND.

» [Corduan, Groszek, & Mileti, 2009] TT} is properly stronger that
the infinite pigeonhole principle.

@ ACA, is equivalent to Yk TT for n > 3.
» ACA, is equivalentto 77 forn> 3 and k > 2.

@ Vk TT? implies Ramsey’s theorem for pairs.

» [Corduan, Groszek, & Mileti, 2009] There is a class of trees so that
the Ramsey Theorem for pairs for that class of trees is equivalent to
ACAo.
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Complexity of the homogeneous substructure

Theorem (C., Hirst, McNicholl)

If[T]" is computably colored with k colors, then there is a N%
monochromatic subtree isomorphic to T.
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Complexity of the homogeneous substructure

Theorem (C., Hirst, McNicholl)

If[T]" is computably colored with k colors, then there is a N
monochromatic subtree isomorphic to T.

Theorem (C., Hirst, McNicholl)

For n > 2, there is a computable coloring of [T]" with no ¥9
monochromatic subtree.
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Complexity of the homogeneous substructure

If a 2-coloring of [T]? is computable, there is always a M3
monochromatic subtree of T that is isomorphic to T.

Idea of proof: Let f be a computable 2-coloring of 2-chains of T.
Foreach o € T, define f,(7) = f(o,7) for r D 0.

Use markers {p, }.c7, associate to each marker a color (red or blue),
Ca, and a subtree T, that is monochromatic of color ¢, for fp, .

@ Foracpg, T, D> Tg, and
@ For o C f3, f(pa, Pg) = Ca-
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Idea of proof. Let f be a computable 2-coloring of 2-chains of T.
Foreach o € T, define f,(7) = f(o,7) for r D 0.
Use markers {p, }.c7, associate to each marker a color (red or blue),
Ca, and a subtree T, that is monochromatic of color ¢, for fp, .

@ Foracpg, T, D> Tg, and

@ Fora C f3, f(Pa, P3) = Ca-

Now, the tree S = {p, }cT colored by p, — ¢, has a monochromatic
subtree, S. This subtree is monochromatic for f.
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Complexity of the homogeneous substructure

If a 2-coloring of [T]? is computable, there is always a M3
monochromatic subtree of T that is isomorphic to T.

Idea of proof. Let f be a computable 2-coloring of 2-chains of T.
Foreach o € T, define f,(7) = f(o,7) for r D 0.

Use markers {p, }.c7, associate to each marker a color (red or blue),
Ca, and a subtree T, that is monochromatic of color ¢, for fp, .

@ Foracpg, T, D> Tg, and
@ For o C f3, f(pa, Pg) = Ca-

Now, the tree S = {p, }cT colored by p, — ¢, has a monochromatic
subtree, S. This subtree is monochromatic for f.

Make this effective!
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Complexity of the homogeneous substructure

The n = 2 case is a base case for finding the complexity bounds of
(n+ 1)-chains.

We reduce the question for colorings of (n + 1)-chains to that of
n-chains by producing a subtree where the color of an (n+ 1)-chain
depends only in its first n elements. (This requires some effort.)

Extracting a monochromatic tree from this subtree requires a jump in
complexity, and so we arrive at the M9, complexity bound for
colorings of (n+ 1)-chains.
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