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Overview

We define a dynamical system to be a pair 〈X, f〉, where X
is a topological space and f a continuous function acting on
X.

The function f represents a change in one unit of time; one

can imagine a particle situated at a point x flowing to the

point f(x) in the next stage.
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Dynamic Topological Logic

Dynamic Topological Logic (DT L) is a modal framework for
reasoning about dynamical systems.

It was first introduced by Artemov, Davoren and Nerode

(1997) as S4C.
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The language

S4C provides a rather simple language for describing
phenomena which occur on dynamical systems.

The formulas of our language will be built up from proposi-

tional variables (p, q, r, etc.) using Boolean connectives and

the two modal operators � and (f).
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Semantics

Formulas of our language will be interpreted on dynamic
topological models, which are dynamic topological systems
〈X, f〉 where each propositional variable p has been
assigned a set V (p) ⊆ X.

The valuation V can then be extended to arbitrary formulas
in our language. Booleans are interpreted classically, so
that, for example,

V (α ∧ β) = V (α) ∩ V (β).
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Topological S4

The operator � is interpreted as a topological interior
operator. It is well-known that the modal logic S4 is
complete for this interpretation. The dual, ♦, functions as a
closure operator, so that

V (�α) = V (α)◦

and
V (♦α) = V (α).
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The temporal operator

The operator (f) represents dynamic properties of the
system.

The formula (f)α means ‘α holds in the next stage’; that is,
(f)α is true on x if and only if α is true on f(x), or,
equivalently,

V ((f)α) = f−1V (α).
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The axioms

Artemov, Davoren and Nerode (1997) give a sound and
complete axiomatization for S4C. The axioms are

all propositional tautologies;

�(ϕ→ ψ) → (�ϕ→ �ψ);

�ϕ→ ϕ;

�ϕ→ ��ϕ;

(f)(ϕ→ ψ) → ((f)ϕ→ (f)ψ);

¬(f)ϕ↔ (f)¬ϕ;

(f)�ϕ→ �(f)ϕ.

The rules are modus ponens and necessitation for both op-

erators.
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The continuity axiom

Most axioms are fairly standard; the most unusual one is

(f)�ϕ→ �(f)ϕ.

This axiom expresses the continuity of f .
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Validity

A formula ϕ is valid on 〈X, f, V 〉 if V (ϕ) = X.

If ϕ is valid on 〈X, f〉, we write

〈X, f〉 |= ϕ.
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Validity

Similarly, if A is a class of dynamic topological models, we
will write

A |= ϕ

if, whenever 〈X, f〉 ∈ A,

〈X, f〉 |= ϕ.

The set of formulas which are valid on A will be denoted

DT LA.
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Some classes of systems

We are interested in the following classes of systems:

the class C of all dynamic topological systems with
continuous f ;

the class K of all dynamic transitive, reflexive Kripke
frames;

the classes Rn of all dynamic topological systems
based on R

n.
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Preorder topologies

Note that the class K can be viewed as a subclass of C;
recall that Kripke semantics on a frame 〈W,4〉 are defined
by setting

w |= �ϕ⇔ ∀v 4 w, v |= ϕ.

But this coincides with topological semantics if we define a

set U ⊆ W to be open if, whenever w ∈ W and v 4 w, it

follows that v ∈ U .

Dynamic topological completeness for the Euclidean plane – p.13/32



Completeness

Theorem 1. S4C (and hence S4) is complete for C and K.

This result is proven in Artemov, Davoren and Nerode

(1997).
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Euclidean completeness

The main result of this talk is the following:

Theorem 2 (DFD). S4C is also complete for R2.

Slavnov had already shown that S4C is not complete for

R (2003) but is complete for
⋃

n<ω
Rn, where n is arbitrary

(2005).
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Topological Bisimulation

The main tool for showing completeness is topological
bisimulation, which plays a role very similar to bisimulation
between Kripke frames.

Definition 1. A topological bisimulation between two dynamic
topological models 〈X1, f1, V1〉 and 〈X2, f2, V2〉 is an open,
continuous function

β : X1 → X1

such that

βf1 = f2β

and, for every variable p,

V1(p) = β−1V2(p).
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Topological bisimulation

Topological bisimulations are useful because of the
following result:

Theorem 3. If

β : X1 → X2

is a topological bisimulation and ϕ is any formula in the language of
S4C, then for every x ∈ X1,

x |= ϕ⇔ β(x) |= ϕ.
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Simulating Kripke frames on R
2

We can use topological bisimulation along with Kripke com-

pleteness to show that S4 is complete for R
2 (indeed it is

also complete for interpretations on R, as shown by Mc Kin-

sey and Tarsky in 1944).
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A Kripke frame
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Simulating a Kripke frame on R
2
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Simulating a Kripke frame on R
2
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Simulating a Kripke frame on R
2

Dynamic topological completeness for the Euclidean plane – p.22/32



Segment trees
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Segment trees

Dynamic topological completeness for the Euclidean plane – p.24/32



Tree maps
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Tree maps
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Tree maps
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A Dynamic Kripke frame
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Simulating a dynamic Kripke frame
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Simulating a dynamic Kripke frame
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Simulating a dynamic Kripke frame
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Simulating a dynamic Kripke frame
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