On Constructive Models of Theories with Linear Rudin-Keisler Ordering

Alexander N. Gavryushkin

gavryushkin@gmail.com

Novosibirsk State University
Definition

A model \mathcal{A} is said to be **decidable** if the set
$\{\varphi(a_0,\ldots,a_n) \mid \mathcal{A} \models \varphi(a_0,\ldots,a_n)\}$ is computable.
Definition
A model \mathcal{A} is said to be *decidable* if the set
{$\varphi(a_0, \ldots, a_n) \mid \mathcal{A} \models \varphi(a_0, \ldots, a_n)$} is computable.

Definition
A model \mathcal{A} is said to be *computable* if its domain, functions and predicates are uniformly computable.
Definition
A model \mathcal{A} is said to be **decidable** if the set
\[\{ \varphi(a_0, \ldots, a_n) \mid \mathcal{A} \models \varphi(a_0, \ldots, a_n) \} \]
is computable.

Definition
A model \mathcal{A} is said to be **computable** if its domain, functions and predicates are uniformly computable.

Definition
A model \mathcal{A} **has computable presentation** (is said to be **computably presentable**) if it is isomorphic to a computable model.
Let T be a countable complete theory. Denote by $\omega(T)$ the number of countable models of T up to isomorphism.
Let T be a countable complete theory. Denote by $\omega(T)$ the number of countable models of T up to isomorphism.

Definition

A theory T is said to be *Ehrenfeucht theory* if $3 \leq \omega(T) < \omega$.
Let T be a countable complete theory. Denote by $\omega(T)$ the number of countable models of T up to isomorphism.

Definition

A theory T is said to be *Ehrenfeucht theory* if $3 \leq \omega(T) < \omega$.

Definition

A model $\mathcal{M} \models T$ is *quasi-prime* if it is prime over some realization of some type of the theory T.
Let T be a countable complete theory. Denote by $\omega(T)$ the number of countable models of T up to isomorphism.

Definition

A theory T is said to be **Ehrenfeucht theory** if $3 \leq \omega(T) < \omega$.

Definition

A model $\mathcal{M} \models T$ is **quasi-prime** if it is prime over some realization of some type of the theory T.

Denote by \mathcal{M}_p the set of all (isomorphic) prime models over realizations of p, i.e.

$$\mathcal{M}_p = \{ \mathcal{M}_{\bar{a}} \mid \langle \mathcal{M}_{\bar{a}}, \bar{a} \rangle \text{ is a prime model of } Th(\mathcal{M}, \bar{a}),$$

where $\mathcal{M} \models p(\bar{a})\}$.
Definition

A type p **does not exceed** a type q **under the Rudin-Keisler pre-order** (p is dominated by q) if $\mathcal{M}_q \models p$. Written $p \leq_{RK} q$.

$p \sim_{RK} q \iff (p \leq_{RK} q \land q \leq_{RK} p)$.

$\mathcal{M}_p \leq_{RK} \mathcal{M}_q \iff p \leq_{RK} q$.
Definition

A type \(p \) \textbf{does not exceed} a type \(q \) \textbf{under the Rudin-Keisler pre-order} (\(p \) is dominated by \(q \)) if \(\mathcal{M}_q \models p \). Written \(p \leq_{RK} q \).

\(p \sim_{RK} q \iff (p \leq_{RK} q \& q \leq_{RK} p) \).

\(M_p \leq_{RK} M_q \iff p \leq_{RK} q \).

\[M_q \models p \iff M_p \leq M_q. \]
Definition

A type p does not exceed a type q under the Rudin-Keisler pre-order (p is dominated by q) if $\mathcal{M}_q \models p$. Written $p \leq_{RK} q$. $p \sim_{RK} q \iff (p \leq_{RK} q \land q \leq_{RK} p)$. $\mathcal{M}_p \leq_{RK} \mathcal{M}_q \iff p \leq_{RK} q$.

$\mathcal{M}_q \models p \iff \mathcal{M}_p \leq \mathcal{M}_q$.

Denote by $S(T)$ the set of all types (over \emptyset) consistent with the theory T.
Definition

A type \(p \) \textit{does not exceed} a type \(q \) \textit{under the Rudin-Keisler pre-order} (\(p \) \textit{is dominated by} \(q \)) if \(M_q \models p \). Written \(p \leq_{RK} q \).

\(p \sim_{RK} q \iff (p \leq_{RK} q \& q \leq_{RK} p) \).

\(M_p \leq_{RK} M_q \iff p \leq_{RK} q \).

\(M_q \models p \iff M_p \preceq M_q \).

Denote by \(S(T) \) the set of all types (over \(\emptyset \)) consistent with the theory \(T \).

Denote by \(RK(T) \) the set of all types of isomorphism of \(M_p \), throughout all \(p \in S(T) \).

This set is pre-ordered by the relation \(\leq_{RK} \).
Definition

A type \(p \) of a theory \(T \) is said to be powerful in the theory \(T \) if every model \(\mathcal{M} \) of \(T \), realizing \(p \), also realizes every type from \(S(T) \).
Definition
A type p of a theory T is said to be **powerful** in the theory T if every model \mathcal{M} of T, realizing p, also realizes every type from $S(T)$.

Definition
A model sequence $\mathcal{M}_0 \preceq \mathcal{M}_1 \preceq \ldots$ is said to be **elementary chain over a type** p if $\mathcal{M}_n \cong \mathcal{M}_p$, for every $n \in \omega$.
Definition

A type p of a theory T is said to be **powerful** in the theory T if every model M of T, realizing p, also realizes every type from $S(T)$.

Definition

A model sequence $M_0 \preceq M_1 \preceq \ldots$ is said to be **elementary chain over a type p** if $M_n \cong M_p$, for every $n \in \omega$.

Definition

A model M is said to be **limit over a type p** if $M = \bigcup_{n \in \omega} M_n$, for some elementary chain $(M_n)_{n \in \omega}$ over p, and $M \not\cong M_p$.
Lemma (S. Sudoplatov)

Every model of an Ehrenfeucht theory either quasi-prime or limit.
Every model of an Ehrenfeucht theory either quasi-prime or limit.

Consider \(\tilde{\mathcal{M}} \in RK(T)/\sim_{RK} \). Let \(\tilde{\mathcal{M}} = \{ \mathcal{M}_{p_0}, \ldots, \mathcal{M}_{p_n} \} \). Denote by \(IL(\tilde{\mathcal{M}}) \) the number of two by two non-isomorphic models each of which is limit over some type \(p_i \).
Lemma (S. Sudoplatov)

Every model of an Ehrenfeucht theory either quasi-prime or limit.

Consider $\tilde{M} \in RK(T)/\sim_{RK}$. Let $\tilde{M} = \{M_{p_0}, \ldots, M_{p_n}\}$. Denote by $IL(\tilde{M})$ the number of two by two non-isomorphic models each of which is limit over some type p_i.

Theorem (S. Sudoplatov)

The following conditions are equivalent:

1. $\omega(T) < \omega$;
2. $|S(T)| = \omega, |RK(T)| < \omega, IL(\tilde{M}) < \omega$, for any $\tilde{M} \in RK(T)/\sim_{RK}$.
Definition

Let \(\langle X; \leq \rangle \) is finite pre-ordered set with the least element \(x_0 \) and the greatest class \(\tilde{x}_n \) in ordered factor-set \(\langle X; \leq \rangle/\sim \) (where \(x \sim y \iff x \leq y \) and \(y \leq x \)), \(\tilde{x}_0 \neq \tilde{x}_n \). Let \(f : X/\sim \to \omega \) is a function, satisfying next properties \(f(\tilde{x}_0) = 0 \), \(f(\tilde{x}_n) > 0 \), \(f(\tilde{y}) > 0 \), when \(|\tilde{y}| > 1 \). The pair \((X, f) \) is said to be e-parameters. At that, the set \(X \) is said to be the first e-parameter and the function \(f \) — the second e-parameter.
Definition

Let $\langle X; \leq \rangle$ is finite pre-ordered set with the least element x_0 and the greatest class \tilde{x}_n in ordered factor-set $\langle X; \leq \rangle/\sim$ (where $x \sim y \iff x \leq y$ and $y \leq x$), $\tilde{x}_0 \neq \tilde{x}_n$. Let $f : X/\sim \to \omega$ is a function, satisfying next properties $f(\tilde{x}_0) = 0$, $f(\tilde{x}_n) > 0$, $f(\tilde{y}) > 0$, when $|\tilde{y}| > 1$. The pair (X, f) is said to be e-parameters. At that, the set X is said to be the first e-parameter and the function f — the second e-parameter.

Definition

A theory T is said to be Ehrenfeucht theory with e-parameters (X, f) if there exists an isomorphism $\varphi : X \to RK(T)$ and for any $\tilde{x} \in X/\sim$, an equality $IL(\varphi(\tilde{x})) = f(\tilde{x})$ holds.
Let T be an Ehrenfeucht theory with e-parameters (X, f).
Let T be an Ehrenfeucht theory with e-parameters (X, f).

Definition

Spectrum of decidable models of Ehrenfeucht theory $\text{SDM}(T)$ is a pair (Y, g), where $Y = \{x \in X \mid \text{element } x \text{ corresponds to a decidable model of the theory } T\}$ (corresponds — in terms of isomorphism φ form previous definition); $\delta f = \delta g$ (δ is domain of a function), $(g(x) = m \iff \text{there exist exactly } m \text{ decidable limit non-isomorphic models of } T \text{ over the model, corresponding to } x)$.
Let T be an Ehrenfeucht theory with e-parameters (X, f).

Definition

Spectrum of decidable models of Ehrenfeucht theory $\text{SDM}(T)$ is a pair (Y, g), where $Y = \{ x \in X \mid \text{element } x \text{ corresponds to a decidable model of the theory } T \}$ (corresponds — in terms of isomorphism φ form previous definition); $\delta f = \delta g$ (δ is domain of a function), $(g(x) = m \iff$ there exist exactly m decidable limit non-isomorphic models of T over the model, corresponding to x).

Definition

Spectrum of computable models of Ehrenfeucht theory $\text{SCM}(T)$ is a pair (Y, g), where $Y = \{ x \in X \mid \text{element } x \text{ corresponds to a computable model of the theory } T \}$; $\delta f = \delta g$, $(g(x) = m \iff$ there exist exactly m computable limit non-isomorphic models of T over the model, corresponding to x).
Problem

Describe sets $\text{SDM}(T)$ and $\text{SCM}(T)$ for arbitrary Ehrenfeucht theory T.
Denote by L_n a linear ordered set, composed of $n + 1$ elements:
$\{x_0 < x_1 < \ldots < x_n\}$.
Denote by L_n a linear ordered set, composed of $n + 1$ elements: $\{x_0 < x_1 < \ldots < x_n\}$.

Theorem

Let $1 \leq n \in \omega$. There exists hereditary decidable Ehrenfeucht theory T_n for which $\text{RK}(T_n) \cong L_n$ holds.
Denote by L_n a linear ordered set, composed of $n + 1$ elements: $\{x_0 < x_1 < \ldots < x_n\}$.

Theorem

Let $1 \leq n \in \omega$. There exists hereditary decidable Ehrenfeucht theory T_n for which $RK(T_n) \cong L_n$ holds.

Theorem

Let $1 \leq n \in \omega$, $0 \leq k \leq n$. There exists Ehrenfeucht theory T_n for which $RK(T_n) \cong L_n$ holds. At that, models, corresponding to elements x_0, x_1, \ldots, x_k from L_n, are decidable, models, corresponding to elements x_{k+1}, \ldots, x_n, have no computable presentations.
Theorem

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m, such that $\text{RK}(T_m) \cong L_m$, every quasi-prime model of T_m is not computably presentable and there exists computably presentable model of T_m.

Corollary

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m, such that $\text{RK}(T_m) \cong L_m$, every quasi-prime model of T_m have no computable presentation, every limit model of T_m, have computable presentation.
Theorem

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m, such that $\text{RK}(T_m) \cong L_m$, every quasi-prime model of T_m is not computably presentable and there exists computably presentable model of T_m.

Corollary

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m, $\text{RK}(T_m) \cong L_m$, such that a model $\mathcal{M} \models T_m$ have computable presentation if and only if \mathcal{M} is limit model over powerful type of the theory T_m.
Theorem

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m, such that $RK(T_m) \cong L_m$, every quasi-prime model of T_m is not computably presentable and there exists computably presentable model of T_m.

Corollary

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m, $RK(T_m) \cong L_m$, such that a model $\mathcal{M} \models T_m$ have computable presentation if and only if \mathcal{M} is limit model over powerful type of the theory T_m.

Corollary

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m, $RK(T_m) \cong L_m$, such that every quasi-prime model of T_m have no computable presentation, every limit model of T_m, have computable presentation.
Thank you for attention!