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Search for weaker subclassical predicate logic
satisfying CME

In [2] it is proved that there are weak subclassical predicate
logics (i.e., classically sound but weaker than FOL) which
also satisfy the Classical Model Existence property (CME
for short): Every consistent set has a classical model.
In this paper we improve the result in [2] to subclassical
predicate logics with weaker propositional parts (weak
extension of BCI). Two approaches (by prenex normal
form construction or by Hintikka style construction) will be
considered.
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The existence of a weakest predicate logic satisfying
CME?

We will also discuss whether there is a weakest
subclassical predicate logic satisfying CME .
Note that in [1] it is proved that there exists a weakest
subclassical propositional logic which characterizes CME .
However, this depends on which consistency is chosen
and what kind of proof rules are allowed.
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CME as a metalogical property

Proving Extended Completeness Theorem (Σ ∣= ' implies
Σ ⊢ ' for any Σ, ') is usually done by

(CME) Every consistent set has a model (under the classical1

semantics).
(RAA) If Σ ∕⊢ ', then Σ ∪ {¬'} is consistent.

However, to logics it is possible to satisfy CME but RAA failed.
(E.g., Intuitionistic Propositional Logic, and examples of
predicate logics in [2])

1Two-valued and truth-functional.
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How CME is proved in logics

1 (Lindenbaum Extension/Choose a consistency) Any
consistent set can be enlarged to a maximal consistent set
Δ.

2 (Negation Completeness) The truth function of negation
can be defined on Δ by adding axiom schemes.

3 (Truth Functionality other than ¬) The truth functions of all
other connectives can be defined on Δ by adding axiom
schemes.

4 (Quantifier) Introducing new constant symbols/terms so
that ∀ means “for all closed terms” and ∃ means “there is a
closed term/constant sysmbol.”
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Lindenbaum’s Lemma and comment

Choose a consinstency (say, Σ is ⊥-consistent iff Σ ∕⊢ ⊥)
and we will use → and ¬ both as primitive.
(Lindenbaum’s Lemma) If Σ is consistent, then there is a
maximal consistent extension of Σ.
Proof idea: Enumerate all sentences '0, . . . , 'n, . . . and
then define Δ0 = Σ,

Δn+1 =

{
Δn ∪ {'n} if Δn ∪ {'n} is consistent,
Δn else.

The consistency and maximality of Δ(=
∪

n∈ℕ Δn) is
obtained by basic properties of Hilbert proof systems,
though the weakest proof system satisfying CME is not
necessarily of Hilbert style.
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Negation Completeness of Δ (1): Adding some
axioms and rules

Recall that Σ is negation complete iff for any sentence ',
exactly one of ',¬' is in Σ. (‘Exactly one’ means ‘not both’
and ‘at least one’.)
To prove that the Lindenbaum extension Δ is negation
complete, for “not both” it is easily done if we take Modus
Ponens and ¬A → (A → ⊥). (Note: Even assuming that
¬A is A → ⊥, MP is not a necessary condition.)
For “at least one”, usually we take Deduction Theorem
(into the logic we are going to construct), and then use the
following argument: If Δ ∕⊢ ⊥ and 'n ∕∈ Δ, then
Δ ∪ {'n} ⊢ ⊥. Then by Deduction Theorem we have
Δ ⊢ 'n → ⊥. By Derivation Closure Property on Δ (this
requires no further axiom), 'n → ⊥ ∈ Δ.
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Negation Completeness of Δ (2): Axioms added so far

We add one more axiom so that “at least one” holds:
(A → ⊥) → ¬A.
In last slide we take rule MP and axioms A → (B → A) and
[A → (B → C)] → [(A → B) → (A → C)] and
¬A → (A → ⊥) and (A → ⊥) → ¬A so that negation
completeness for Δ holds.
However, we can take weaker axiom instead of
(A → ⊥) → ¬A. What we need are: If Δ ⊢ (A → ⊥) and
¬A ∕∈ Δ, then Δ ⊢ ⊥. Then (A → ⊥) → [(¬A → ⊥) → ⊥]
suffices.
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Negation Completeness of Δ (3): Improved by weaker
deduction theorem

However, we can take BCI logic, which does have a weaker
version of deduction theorem (well-known): If Σ ∕⊢  and
Σ ∪ {'} ⊢  , then for some n > 0 we have Σ ⊢ '→n  .
Here '→1  is '→  and '→n+1  is '→ ('→n  ).
Here we take rule MP and axioms (B), (C), (I) and
¬A → (A → ⊥) (for not-both), and
(A →m ⊥) → [(¬A →k ⊥) → ⊥] for all positive integers
m, k (for at-least-one) into axioms.
We abbreviate the last axiom as follows:
(A →+ ⊥) → [((¬A) →+ ⊥) → ⊥]
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Truth functionality for →

The truth functionality of →, i.e., ('→  ) ∈ Δ iff ' ∕∈ Δ or
 ∈ Δ for any ', , can be done by taking rule MP, axioms
[A → (B → C)] → [(A → B) → (A → C)], B → (A → B),
(A → ⊥) → {[(A → B) → ⊥] → ⊥}.
Similarly, in weak extension of BCI logic, we take rule MP
and axioms (B),(C),(I), B → {[(A → B) →+ ⊥] → ⊥},
(A →+ ⊥) → {[(A → B) →+ ⊥] → ⊥}.
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Hintikka style construction (1)

We consider logical connectives ∀, ∃, →, ⊥, ¬ (and ¬ is a
primitive symbol which is not defined by → ⊥).
Assume that we have a ⊥-consistent set Σ. What we will
do is to enlarge this set so that ∀ means “for all closed
terms” and ∃ means “there is a (relatively new) constant
symbol (to witness)” (this is done in [2]: using prenex
normal form theorem to convert all sentences, then at
every level, we enlarge sets by introducing '(t) for ∀x'(x)
with all closed terms t at this level, and relatively new
constant symbols (indexed by Skolem-function closed
term) '(cf ) for ∃'(x). And do this countably many levels.
Finally (taking union and extract the quantifier-free part) we
do Lindenbaum extension .
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Hintikka style construction (2)

Now we want to do something similar, but what if we do not
have prenex normal form theorem?
prenex normal form theorem does not matter! For a
sentence with quantifier(s), we decompose it as follows:
add ' for ¬¬'
add '(t) for all closed terms at this level for ∀x'(x)

add ∃x¬' for ¬∀x'
add '(c) with relatively new constant symbol c for ∃x'(x)

add ∀x¬'(x) for ¬∃x'(x)

add at least one of ¬', for '→  (not quantifier-free)
add both ', ¬ for ¬('→  )
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Hintikka style construction (2)

At each level we do above extension alternatively and
countably many times, then move to next level. Repeat this
countably many. Finally at the end (taking union and
extract quantifer-free part), do the quantifier-free extension
as in propositional level.
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Axioms needed for Hintikka style construction

(¬¬-Elim) ¬¬'→ [('→+ ⊥) → ⊥], where the sentence ' is not
quantifier-free.

(∀-Elim) ∀x'(x) → [('(t) →+ ⊥) → ⊥], where t is a closed term (to
the corresponding language).

(¬∀-Ex) ¬∀x'→ ([(∃x¬') →+ ⊥] → ⊥)
(∃-Elim) ∃x'(x) → [∀y('(y) →+ ⊥) → ⊥], where x is free for y in

'(y) and y is free for x in '(x).
(¬∃-Ex) ¬∃x'→ ([(∀x¬') →+ ⊥] → ⊥)

(→-Elim) ('→  ) → {(¬'→+ ⊥) → [( →+ ⊥) → ⊥]}, where at
least one of sentences ',  is not quantifier-free.

(¬ →-Ex1) ¬('→  ) → [('→+ ⊥) → ⊥], where at least one of
sentences ',  is not quantifier-free.

(¬ →-Ex2) ¬('→  ) → [(¬ →+ ⊥) → ⊥], where at least one of
sentences ',  is not quantifier-free.
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Concluding Remarks

BCI + prenex normal form construction: Skip. (Interaction
between PNF and linear logic.)
Is there a weakest predicate system for CME? Probably
not (Conjecture). The reason is that one can not have an
inconsistent sequent of the following form:
{∃xR(x)} ∪ {R(t) ∣ t is a closed term of ℒ} ⇒
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