SOME PROPERTIES OF COMPUTABLE NUMBERINGS IN VARIOUS LEVELS OF DIFFERENCE HIERARCHY

Ospichev Sergey

Novosibirsk State University
Mechanics and Mathematics Department
The Chair of Discrete Mathematics and Computer science

Science advisor: Sergey S. Goncharov
n-computable enumerable sets

Definition

We call a set $A \subseteq \omega$ is n-computable enumerable if there are uniformly computable sequence of sets $\{A_s\}_{s \in \omega}$ such for all x,

$$x \notin A_0$$

$$A(x) = \lim_{s} A_s(x)$$

$$|\{s \in \omega | A_{s+1} \neq A_s\}| \leq n$$
Ershov’s hierarchy

Let S – univalent notation system for constructive ordinals, $A \subseteq \omega$ and α – ordinal, which has notation a in S.

Definition

Set $A \subseteq \omega$ in level Σ_{α}^{-1} of Ershov’s hierarchy (or A is Σ_{α}^{-1}-set), if there exist partially computable function Ψ, and for all x,

$$x \in A \rightarrow \exists \lambda (\Psi(\lambda, x) \downarrow \text{ and } A(x) = \Psi((\mu \lambda < \alpha)_S(\Psi((\lambda)_S, x) \downarrow, x))$$

$$x \not\in A \rightarrow \text{ or } \forall \lambda (\Psi(\lambda, x) \uparrow), \text{ or } \exists \lambda (\Psi(\lambda, x) \downarrow \text{ and } A(x) = \Psi((\mu \lambda < \alpha)_S(\Psi((\lambda)_S, x) \downarrow, x))$$.
Some definitions

Δ_{α}^{-1}-sets
finite levels of difference hierarchy

The End

Ershov’s hierarchy

Definition

A in level Π_{α}^{-1} of Ershov’s hierarchy, if $\overline{A} \in \Sigma_{\alpha}^{-1}$

A in level Δ_{α}^{-1} of Ershov’s hierarchy, if A and \overline{A} are Σ_{α}^{-1}-sets, in other words $\Delta_{\alpha}^{-1} = \Sigma_{\alpha}^{-1} \cap \Pi_{\alpha}^{-1}$.
Definition

Numbering of family S is a map ν from ω onto the family S.

Definition

Numbering η is called Σ_{α}^{-1}-computable, if set $\{<x, y> | y \in \eta x\}$ is a Σ_{α}^{-1}-set and Δ_{α}^{-1}-computable, if $\{<x, y> | y \in \eta x\}$ in level Δ_{α}^{-1}.
Definition

Numbering of family S is a map ν from ω onto the family S.

Definition

Numbering η is called Σ^{α}_{-1}-computable, if set $\{<x, y> | y \in \eta x\}$ is a Σ^{α}_{-1}-set and Δ^{α}_{-1}-computable, if $\{<x, y> | y \in \eta x\}$ in level Δ^{α}_{-1}.
Numberings

Definition

Numbering η is called Friedberg numbering, if for all $n \neq m$
$\eta_n \neq \eta_m$.

Definition

Numbering μ is called minimal, if for all numberings ν_n from reducing ν to μ goes, that ν is equivalent to μ.
Preposition

There is no universal computable function for family of all computable sets.

Theorem

There is no Δ^{-1}_α-computable numbering for family of all Δ^{-1}_α-sets.
Preposition

There is no universal computable function for family of all computable sets.

Theorem

There is no Δ^{-1}_α-computable numbering for family of all Δ^{-1}_α-sets.
Friedberg theorem

Theorem

There is effective enumeration of the family of all computable enumerable sets without repetition.

Theorem

(Goncharov, Lemp, Solomon) For all n there is Σ_{n}^{-1}-computable Friedberg numbering for family of all Σ_{n}^{-1}-sets.
Theorem

There is effective enumeration of the family of all computable enumerable sets without repetition.

Theorem

(Goncharov, Lemp, Solomon) For all n there is Σ^{-1}_n-computable Friedberg numbering for family of all Σ^{-1}_n-sets.
Some definitions
\(\Delta_\alpha^{-1} \)-sets
finite levels of difference hierarchy

The End

Friedberg numberings

Theorem

For all \(n \) there is \(\Sigma_{2n}^{-1} \)-computable Friedberg numbering for family of all \(\Sigma_n^{-1} \)-sets. And there is computable function, which \(m \)-reduces Friedberg numbering for family of all \(\Sigma_{n-1}^{-1} \)-sets to Friedberg numbering for family of all \(\Sigma_n^{-1} \)-sets. Moreover, numbering and function are constructed uniformly on \(n \).
Theorem

Let β^n is numbering, which is constructed in previous theorem. Define γ:

$$\gamma_n = \beta^{n_1}_{n_2},$$

where $n = < n_1, n_2 >$. γ_n is Δ^-_1-computable minimal numberings for family of all sets from $\bigcup_{k \in \omega} \Sigma^-_{k}$.
Thanks for your attention!:}