On forcing with σ-ideals of closed sets

Marcin Sabok (Wrocław University)

Sofia, 31 July 2009
Idealized forcing

Many classical forcing notions can be represented in the form $P_I = \text{Bor}(X) \setminus I$, where X is a Polish space and I is a σ-ideal on X.

Examples

The examples are: the Cohen forcing (σ-ideal of meager sets), the Sacks forcing (σ-ideal of countable sets), or the Miller forcing (K_σ sets in ω_1).

Another way

Note that the forcing $P_I = \text{Bor}(X) \setminus I$ is equivalent to the quotient Boolean algebra $\text{Bor}(X) / I$ (which is the separative quotient of P_I).
Idealized forcing

Many classical forcing notions can be represented in the form $P_I = \text{Bor}(X) \setminus I$, where X is a Polish space and I is a σ-ideal on X.

Examples

The examples are: the Cohen forcing (σ-ideal of meager sets), the Sacks forcing (σ-ideal of countable sets), or the Miller forcing (K_σ sets in ω^ω).
Idealized forcing

Many classical forcing notions can be represented in the form $P_I = \text{Bor}(X) \setminus I$, where X is a Polish space and I is a σ-ideal on X.

Examples

The examples are: the Cohen forcing (σ-ideal of meager sets), the Sacks forcing (σ-ideal of countable sets), or the Miller forcing (K_σ sets in ω^ω).

Another way

Note that the forcing $P_I = \text{Bor}(X) \setminus I$ is equivalent to the quotient Boolean algebra $\text{Bor}(X)/I$ (which is the separative quotient of P_I).
The generic real

A forcing notion of the form \(\text{Bor}(\omega^\omega)/I \) adds the \textit{generic real}, denoted \(\dot{g} \) and defined in the following way:

\[
[\dot{g}(n) = m] = [(n, m)]_I,
\]

where \([(n, m)] \) is the basic clopen in \(\omega^\omega \).
The generic real

A forcing notion of the form $\text{Bor}(\omega^\omega)/I$ adds the generic real, denoted \dot{g} and defined in the following way:

$$\left[\dot{g}(n) = m\right] = [(n, m)],$$

where $[(n, m)]$ is the basic clopen in ω^ω.

Genericity

Of course, the generic ultrafilter can be recovered from the generic real in the following way:

$$G = \{B \in \text{Bor}(X) : g \in B\}$$

where g denotes the generic real.
The σ-ideal

We say that a σ-ideal I is *generated by closed sets*, if for each $A \in I$ there is a sequence of closed sets $F_n \in I$ such that $A \subseteq \bigcup_{n<\omega} F_n$.

Theorem (Solecki)

Let I be a σ-ideal generated by closed sets. If $A \subseteq X$ is analytic, then either $A \in I$, or else A contains a G_δ set G such that $G \not\in I$.

Corollary

From the above theorem of Solecki we get that if I is generated by closed sets, then P_I is forcing equivalent to $Q_I = \Sigma^1_1 \setminus I$ (P_I is dense in Q_I).
The \(\sigma\)-ideal

We say that a \(\sigma\)-ideal \(I\) is *generated by closed sets*, if for each \(A \in I\) there is a sequence of closed sets \(F_n \in I\) such that \(A \subseteq \bigcup_{n<\omega} F_n\).

Theorem (Solecki)

Let \(I\) be a \(\sigma\)-ideal generated by closed sets. If \(A \subseteq X\) is analytic, then either \(A \in I\), or else \(A\) contains a \(G_\delta\) set \(G\) such that \(G \notin I\).
The σ-ideal

We say that a σ-ideal I is *generated by closed sets*, if for each $A \in I$ there is a sequence of closed sets $F_n \in I$ such that $A \subseteq \bigcup_{n<\omega} F_n$.

Theorem (Solecki)

Let I be a σ-ideal generated by closed sets. If $A \subseteq X$ is analytic, then either $A \in I$, or else A contains a G_δ set G such that $G \not\in I$.

Corollary

From the above theorem of Solecki we get that if I is generated by closed sets, then P_I is forcing equivalent to $Q_I = \Sigma^1_1 \setminus I$ (P_I is dense in Q_I).
Theorem (Zapletal)

If I is a σ-ideal generated by closed sets, then the forcing P_I is proper.
Theorem (Zapletal)

If I is a σ-ideal generated by closed sets, then the forcing P_I is proper.

Axiom A

Recall that a forcing notion P satisfies Baumgartner’s Axiom A if there is a sequence of partial orders \leq_n on P such that $\leq_0 = \leq$, $\leq_{n+1} \subseteq \leq_n$ and

- if $\langle p_n \in P, n < \omega \rangle$ is such that $p_{n+1} \leq_n p_n$, then there is $q \in P$ such that $q \leq_n p_n$ for all n,
- for every $p \in P$, for every n and for every name $\dot{\alpha}$ for an ordinal there exist $q \in P$ and a countable set of ordinals A such that $q \leq_n p_n$ for each $n < \omega$, and $q \Vdash \dot{\alpha} \in A$.
Proposition (MS)

If I is a σ-ideal generated by closed sets, then the forcing P_I is equivalent to a forcing with trees, which satisfies Axiom A.

Sketch of the proof

Assume $X = \omega^\omega$ and fix I. Let $A \subseteq \omega^\omega$ be an analytic set and let T be a tree on $\omega \times \omega$ projecting to A. Consider the following game (between Adam and Eve).

In his n-th move, Adam picks $\tau_n \in T$ such that τ_{n+1} extends τ_n.

In her n-th move, Eve picks a clopen set O_n in ω^ω such that $\text{proj}[T_{\tau_n}] \notin I \Rightarrow O_n \cap \text{proj}[T_{\tau_n}] \notin I$.
Proposition (MS)

If I is a σ-ideal generated by closed sets, then the forcing P_I is equivalent to a forcing with trees, which satisfies Axiom A.

Sketch of the proof

Assume $X = \omega^\omega$ and fix I. Let $A \subseteq \omega^\omega$ be an analytic set and let T be a tree on $\omega \times \omega$ projecting to A.

Marcin Sabok (Wrocław University)
Proposition (MS)

If I is a σ-ideal generated by closed sets, then the forcing P_I is equivalent to a forcing with trees, which satisfies Axiom A.

Sketch of the proof

Assume $X = \omega^\omega$ and fix I. Let $A \subseteq \omega^\omega$ be an analytic set and let T be a tree on $\omega \times \omega$ projecting to A.

Game $G_I(T)$

Consider the following game (between Adam and Eve).

- in his n-th move, Adam picks $\tau_n \in T$ such that τ_{n+1} extends τ_n.
- in her n-th move, Eve picks a clopen set O_n in ω^ω such that

$\text{proj}[T_{\tau_n}] \notin I \Rightarrow O_n \cap \text{proj}[T_{\tau_n}] \notin I$.

Marcin Sabok (Wroclaw University) | On forcing with σ-ideals of closed sets
By the end of a play, Adam and Eve have a sequence of closed sets E_k in ω^ω defined as follows:

$$E_k = 2^\omega \setminus \bigcup_{i<\omega} O_{\rho^{-1}(i,k)}. $$

(ρ is some fixed bijection between ω and ω^2). Define $x = \pi(\bigcup_{n<\omega} \tau_n) \in \omega^\omega$. **Adam wins** if and only if

$$x \notin \bigcup_{k<\omega} E_k.$$
Winning condition

By the end of a play, Adam and Eve have a sequence of closed sets \(E_k \) in \(\omega^\omega \) defined as follows:

\[
E_k = 2^\omega \setminus \bigcup_{i < \omega} O_{\rho^{-1}(i,k)}.
\]

(\(\rho \) is some fixed bijection between \(\omega \) and \(\omega^2 \)). Define

\[
x = \pi\left(\bigcup_{n < \omega} \tau_n \right) \in \omega^\omega.
\]

Adam wins if and only if

\[
x \notin \bigcup_{k < \omega} E_k.
\]

Lemma

Eve has a winning strategy in \(G_I(T) \) if and only if \(A = \text{proj}[T] \in I \).
If S is a strategy for Adam in $G_I(T)$, then by $\text{proj}[S]$ we denote the set of points $x \in \omega^\omega$ which arise at the end of some game obeying S.

Lemma

If S is a winning strategy in $G_I(T)$, then $\text{proj}[S]$ is an analytic subset of A and $\text{proj}[S] \notin I$.

Forcing with strategies

Consider the following forcing T_I:

$$
\{S : S \text{ is a winning strategy for Adam in } G_I(T) \text{ for some tree } T\}
$$

ordered as follows:

$S_0 \leq S_1$ iff $\text{proj}[S_0] \subseteq \text{proj}[S_1]$.

Marcin Sabok (Wrocław University)

On forcing with σ-ideals of closed sets
Strategy

If S is a strategy for Adam in $G_I(T)$, then by $\text{proj}[S]$ we denote the set of points $x \in \omega^\omega$ which arise at the end of some game obeying S.

Lemma

If S is a winning strategy in $G_I(T)$, then $\text{proj}[S]$ is an analytic subset of A and $\text{proj}[S] \notin I$.

Marcin Sabok (Wrocław University) On forcing with σ-ideals of closed sets
Strategy

If S is a strategy for Adam in $G_I(T)$, then by $\text{proj}[S]$ we denote the set of points $x \in \omega^\omega$ which arise at the end of some game obeying S.

Lemma

If S is a winning strategy in $G_I(T)$, then $\text{proj}[S]$ is an analytic subset of A and $\text{proj}[S] \notin I$.

Forcing with strategies

Consider the following forcing T_I:

$\{ S : S$ is a winning strategy for Adam in $G_I(T)$ for some tree $T \}$

ordered as follows:

$S_0 \leq S_1$ iff $\text{proj}[S_0] \subseteq \text{proj}[S_1]$.
Notice that $T_I \ni S \mapsto \text{proj}[S] \in Q_I$ is a dense embedding, hence the three forcing notions P_I, Q_I and T_I are forcing equivalent. Let us show that T_I satisfies Axiom A.
Dense embedding

Notice that $T_I \ni S \mapsto \text{proj}[S] \in Q_I$ is a dense embedding, hence the three forcing notions P_I, Q_I, and T_I are forcing equivalent. Let us show that T_I satisfies Axiom A.

Winning condition revised

Recall that the winning condition for Adam in $G_I(T)$ says that

$$x \notin \bigcup_k E_k.$$

Fix k. For each play in $G_I(T)$ both x and E_k are built “step-by-step” (E_k from basic clopen sets which sum up to $\omega^\omega \setminus E_k$). Hence, if π is a play and $x \notin E_k$, then there is $m < \omega$ such that the partial play $\pi[m]$ already determines that “$x \notin E_k$”.

Marcin Sabok (Wrocław University) On forcing with σ-ideals of closed sets
Fusion

Let $S \in T_I$ be a winning strategy for Adam. For each play π in S there is the least $m < \omega$ such that $\pi|_m$ determines that “$x \not\in E_i$” for $i \leq k$. Therefore, we can define the k-th front of the tree S, denoted by $F_k(S)$ so that each play determines “$x \not\in E_i$” before passing through $F_k(S)$.

Axiom A

We define the inequalities \leq_k as follows:

$S_1 \leq_k S_0$ if and only if $S_1 \leq S_0$, $F_k(S_1) = F_k(S_0)$.

Marcin Sabok (Wrocław University)

On forcing with σ-ideals of closed sets
Idealized forcing

Fusion

Let $S \in T_I$ be a winning strategy for Adam. For each play π in S there is the least $m < \omega$ such that $\pi|m$ determines that \("x \notin E_i" \) for $i \leq k$. Therefore, we can define the k-th front of the tree S, denoted by $F_k(S)$ so that each play determines \("x \notin E_i" \) before passing through $F_k(S)$.

Axiom A

We define the inequalities \leq_k as follows: $S_1 \leq_k S_0$ if and only if

- $S_1 \leq S_0$,
- $F_k(S_1) = F_k(S_0)$.
The end

Thank You.