
Comparing methods for program extraction from classical proofs

Comparing methods for program extraction
from classical proofs

Trifon Trifonov
(joint work with Diana Ratiu)

Ludwig Maximilian Universität, München

Logic Colloquium 2009
Sofia, 31.07.2009

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Negative Arithmetic (NAω)

We consider the negative fragment of Heyting Arithmetic.

A,B ::= P(~t) | at(bB) | A→ B | A ∧ B | ∀xA | ∃xA

¬A ::= A→ ⊥
∃̃xA ::= ¬∀x¬A

We obtain HAω by adding the strong existential ∃.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Negative Arithmetic (NAω)

We consider the negative fragment of Heyting Arithmetic.

A,B ::= P(~t) | at(bB) | A→ B | A ∧ B | ∀xA | ∃xA
¬A ::= A→ ⊥

∃̃xA ::= ¬∀x¬A

We obtain HAω by adding the strong existential ∃.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Negative Arithmetic (NAω)

We consider the negative fragment of Heyting Arithmetic.

A,B ::= P(~t) | at(bB) | A→ B | A ∧ B | ∀xA | ∃xA
¬A ::= A→ ⊥
∃̃xA ::= ¬∀x¬A

We obtain HAω by adding the strong existential ∃.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Heyting Arithmetic (HAω)

We consider the negative fragment of Heyting Arithmetic.

A,B ::= P(~t) | at(bB) | A→ B | A ∧ B | ∀xA | ∃xA
¬A ::= A→ ⊥
∃̃xA ::= ¬∀x¬A

We obtain HAω by adding the strong existential ∃.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Weak and strong existence

I ∃xA
I To prove: show t and prove A(t)

I ∃̃xA
I To prove: assume u : ∀x(A→ ⊥) and show ⊥

Weak existence proofs contain implicit computational content.
Simple idea: look which term t is used with the assumption u.
But: u can be used many times with different terms!
Idea: Try to keep track of all terms used for u.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Weak and strong existence

I ∃xA
I To prove: show t and prove A(t)

I ∃̃xA
I To prove: assume u : ∀x(A→ ⊥) and show ⊥

Weak existence proofs contain implicit computational content.
Simple idea: look which term t is used with the assumption u.
But: u can be used many times with different terms!
Idea: Try to keep track of all terms used for u.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Weak and strong existence

I ∃xA
I To prove: show t and prove A(t)

I ∃̃xA
I To prove: assume u : ∀x(A→ ⊥) and show ⊥

Weak existence proofs contain implicit computational content.
Simple idea: look which term t is used with the assumption u.
But: u can be used many times with different terms!
Idea: Try to keep track of all terms used for u.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Weak and strong existence

I ∃xA
I To prove: show t and prove A(t)

I ∃̃xA
I To prove: assume u : ∀x(A→ ⊥) and show ⊥

Weak existence proofs contain implicit computational content.
Simple idea: look which term t is used with the assumption u.
But: u can be used many times with different terms!
Idea: Try to keep track of all terms used for u.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Weak and strong existence

I ∃xA
I To prove: show t and prove A(t)

I ∃̃xA
I To prove: assume u : ∀x(A→ ⊥) and show ⊥

Weak existence proofs contain implicit computational content.
Simple idea: look which term t is used with the assumption u.

But: u can be used many times with different terms!
Idea: Try to keep track of all terms used for u.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Weak and strong existence

I ∃xA
I To prove: show t and prove A(t)

I ∃̃xA
I To prove: assume u : ∀x(A→ ⊥) and show ⊥

Weak existence proofs contain implicit computational content.
Simple idea: look which term t is used with the assumption u.
But: u can be used many times with different terms!

Idea: Try to keep track of all terms used for u.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Weak and strong existence

I ∃xA
I To prove: show t and prove A(t)

I ∃̃xA
I To prove: assume u : ∀x(A→ ⊥) and show ⊥

Weak existence proofs contain implicit computational content.
Simple idea: look which term t is used with the assumption u.
But: u can be used many times with different terms!
Idea: Try to keep track of all terms used for u.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Boolean falsity

Using a general predicate variable ⊥ we work in a minimal logic
setting. We denote the system as HAω

0 .
However, if we use decidable falsity F := at(ff), we are able to
prove by induction on the definition of formulas

Lemma (ex falso quodlibet)
HAω ` F→ A

Lemma (stability)
NAω ` ((A→ F)→ F)→ A
if A contains no predicate variables.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Boolean falsity

Using a general predicate variable ⊥ we work in a minimal logic
setting. We denote the system as HAω

0 .
However, if we use decidable falsity F := at(ff), we are able to
prove by induction on the definition of formulas

Lemma (ex falso quodlibet)
HAω ` F→ A

Lemma (stability)
NAω ` ((A→ F)→ F)→ A
if A contains no predicate variables.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Boolean falsity

Using a general predicate variable ⊥ we work in a minimal logic
setting. We denote the system as HAω

0 .
However, if we use decidable falsity F := at(ff), we are able to
prove by induction on the definition of formulas

Lemma (ex falso quodlibet)
HAω ` F→ A

Lemma (stability)
NAω ` ((A→ F)→ F)→ A
if A contains no predicate variables.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Boolean falsity

Using a general predicate variable ⊥ we work in a minimal logic
setting. We denote the system as HAω

0 .
However, if we use decidable falsity F := at(ff), we are able to
prove by induction on the definition of formulas

Lemma (ex falso quodlibet)
HAω ` F→ A

Lemma (stability)
NAω ` ((A→ F)→ F)→ A
if A contains no predicate variables.

Comparing methods for program extraction from classical proofs

Constructive and classical logic

Boolean falsity

Using a general predicate variable ⊥ we work in a minimal logic
setting. We denote the system as HAω

0 .
However, if we use decidable falsity F := at(ff), we are able to
prove by induction on the definition of formulas

Lemma (ex falso quodlibet)
HAω ` F→ A

Lemma (stability)
NAω ` ((A→ F)→ F)→ A
if A contains no predicate variables.

Comparing methods for program extraction from classical proofs

Refined A-translation

A-translation

Idea: use ⊥ to extract computational content of proofs in NAω.

Theorem (Extraction via A-translation)
Let M be a proof of

HAω
0 ` D → ∃̃yρG

with D,G not containing ⊥. Then

HAω ` D → ∃yG

Idea.
Let M ′ := M

[
⊥ := ∃yG

]
. A witness for y is [[M ′]](λyy).

Comparing methods for program extraction from classical proofs

Refined A-translation

A-translation

Idea: use ⊥ to extract computational content of proofs in NAω.

Theorem (Extraction via A-translation)
Let M be a proof of

HAω
0 ` D → ∃̃yρG

with D,G not containing ⊥. Then

HAω ` D → ∃yG

Idea.
Let M ′ := M

[
⊥ := ∃yG

]
. A witness for y is [[M ′]](λyy).

Comparing methods for program extraction from classical proofs

Refined A-translation

A-translation

Idea: use ⊥ to extract computational content of proofs in NAω.

Theorem (Extraction via A-translation)
Let M be a proof of

HAω
0 ` D → ∀yρ(G→ ⊥)→ ⊥

with D,G not containing ⊥. Then

HAω ` D → ∃yG

Idea.
Let M ′ := M

[
⊥ := ∃yG

]
. A witness for y is [[M ′]](λyy).

Comparing methods for program extraction from classical proofs

Refined A-translation

A-translation

Idea: use ⊥ to extract computational content of proofs in NAω.

Theorem (Extraction via A-translation)
Let M be a proof of

HAω
0 ` D → ∀yρ(G→ ⊥)→ ⊥

with D,G not containing ⊥. Then

HAω ` D → ∃yG

Idea.
Let M ′ := M

[
⊥ := ∃yG

]
. A witness for y is [[M ′]](λyy).

Comparing methods for program extraction from classical proofs

Refined A-translation

A-translation

Idea: use ⊥ to extract computational content of proofs in NAω.

Theorem (Extraction via A-translation)
Let M be a proof of

HAω
0 ` D → ∀yρ(G→ ⊥)→ ⊥

with D,G not containing ⊥. Then

HAω ` D → ∃yG

Idea.
Let M ′ := M

[
⊥ := ∃yG

]
. A witness for y is [[M ′]](λyy).

Comparing methods for program extraction from classical proofs

Refined A-translation

A-translation

Idea: use ⊥ to extract computational content of proofs in NAω.

Theorem (Extraction via A-translation)
Let M be a proof of

HAω
0 ` D → ∀yρ(G→ ⊥)→ ⊥

with D,G not containing ⊥. Then

HAω ` D → ∃yG

Idea.
Let M ′ := M

[
⊥ := ∃yG

]
. A witness for y is [[M ′]](λyy).

Comparing methods for program extraction from classical proofs

Refined A-translation

Definite and goal formulas

What if ⊥ appears in D or G?
Bucholz, Berger, Schwichtenberg (2000), Seisenberger (2008):

D ::= P | G→ D (if τ(D) = ε then τ(G) = ε)
| D1 ∧ D2 (if τ(D1) 6= ε then τ(D2) = ε)
| ∀xD

G ::= P | D → G (if τ(G) 6= ε and τ(D) = ε then D decidable)
| G1 ∧G2
| ∀xG (if τ(G) = ε)

Comparing methods for program extraction from classical proofs

Refined A-translation

Definite and goal formulas

What if ⊥ appears in D or G?
Bucholz, Berger, Schwichtenberg (2000), Seisenberger (2008):

D ::= P | G→ D (if τ(D) = ε then τ(G) = ε)
| D1 ∧ D2 (if τ(D1) 6= ε then τ(D2) = ε)
| ∀xD

G ::= P | D → G (if τ(G) 6= ε and τ(D) = ε then D decidable)
| G1 ∧G2
| ∀xG (if τ(G) = ε)

Comparing methods for program extraction from classical proofs

Dialectica interpretation

Dialectica interpretation

Let us have a proof of B from the assumption A.
I In case A is true, we have a function producing a witness

for B from a witness for A
I In case B is false, we have a counterexample for A

depending on a counterexample for B

Comparing methods for program extraction from classical proofs

Dialectica interpretation

Dialectica interpretation

Let us have a proof of B from the assumption A.
I In case A is true, we have a function producing a witness

for B from a witness for A
I In case B is false, we have a counterexample for A

depending on a counterexample for B

Comparing methods for program extraction from classical proofs

Dialectica interpretation

Dialectica interpretation

Let us have a proof of B from the assumption A.
I In case A is true, we have a function producing a witness

for B from a witness for A
I In case B is false, we have a counterexample for A

depending on a counterexample for B

Comparing methods for program extraction from classical proofs

Dialectica interpretation

Contractions in Dialectica

I When A was used more than once, we have a
counterexample for each separate use

I Still we need to choose only one of them
I We need to be able to decide which instance of the

assumption A was false
I Other approaches — finite set of solutions (Diller-Nahm,

1974), monotone Dialectica (Kohlenbach, 1993)

Comparing methods for program extraction from classical proofs

Dialectica interpretation

Contractions in Dialectica

I When A was used more than once, we have a
counterexample for each separate use

I Still we need to choose only one of them
I We need to be able to decide which instance of the

assumption A was false
I Other approaches — finite set of solutions (Diller-Nahm,

1974), monotone Dialectica (Kohlenbach, 1993)

Comparing methods for program extraction from classical proofs

Dialectica interpretation

Contractions in Dialectica

I When A was used more than once, we have a
counterexample for each separate use

I Still we need to choose only one of them
I We need to be able to decide which instance of the

assumption A was false
I Other approaches — finite set of solutions (Diller-Nahm,

1974), monotone Dialectica (Kohlenbach, 1993)

Comparing methods for program extraction from classical proofs

Dialectica interpretation

Contractions in Dialectica

I When A was used more than once, we have a
counterexample for each separate use

I Still we need to choose only one of them
I We need to be able to decide which instance of the

assumption A was false
I Other approaches — finite set of solutions (Diller-Nahm,

1974), monotone Dialectica (Kohlenbach, 1993)

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

The Infinite Pigeon Hole Principle

Theorem (Infinite Pigeon Hole (IPH) Principle)
Any infinite sequence coloured with finitely many colours has
an infinite monochromatic subsequence.
Formalisation:

∀r∀f
(
∀n(fn < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

Proof of IPH

∀r∀f
(
∀k (fk < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)
Proof.
Induction on r .

I When r = 0 we have a false premise.
I Assume the claim for r , and take f with r + 1 colours.
I A case distinction on “the colour r appears infinitely often”:

I If yes, then we have found a monochromatic subsequence
I If not, we take the subsequence after the last appearance

of the colour r and apply the induction hypothesis

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

Proof of IPH

∀r∀f
(
∀k (fk < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)
Proof.
Induction on r .

I When r = 0 we have a false premise.
I Assume the claim for r , and take f with r + 1 colours.
I A case distinction on “the colour r appears infinitely often”:

I If yes, then we have found a monochromatic subsequence
I If not, we take the subsequence after the last appearance

of the colour r and apply the induction hypothesis

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

Proof of IPH

∀r∀f
(
∀k (fk < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)
Proof.
Induction on r .

I When r = 0 we have a false premise.
I Assume the claim for r , and take f with r + 1 colours.
I A case distinction on “the colour r appears infinitely often”:

I If yes, then we have found a monochromatic subsequence
I If not, we take the subsequence after the last appearance

of the colour r and apply the induction hypothesis

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

Proof of IPH

∀r∀f
(
∀k (fk < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)
Proof.
Induction on r .

I When r = 0 we have a false premise.
I Assume the claim for r , and take f with r + 1 colours.
I A case distinction on “the colour r appears infinitely often”:

I If yes, then we have found a monochromatic subsequence
I If not, we take the subsequence after the last appearance

of the colour r and apply the induction hypothesis

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

Proof of IPH

∀r∀f
(
∀k (fk < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)
Proof.
Induction on r .

I When r = 0 we have a false premise.
I Assume the claim for r , and take f with r + 1 colours.
I A case distinction on “the colour r appears infinitely often”:

I If yes, then we have found a monochromatic subsequence
I If not, we take the subsequence after the last appearance

of the colour r and apply the induction hypothesis

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

IPH is non-constructive

∀r∀f
(
∀k (fk < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)
Thus, we cannot have a program

I taking r and f as inputs
I and providing an infinite subsequence fm of colour q

But: we can have a program
I taking r , f and a number n as inputs
I and providing a finite subsequence of length n and colour q

It should reflect the finitary computational meaning of IPH.

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

IPH is non-constructive

∀r∀f
(
∀k (fk < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)
Thus, we cannot have a program

I taking r and f as inputs
I and providing an infinite subsequence fm of colour q

But: we can have a program
I taking r , f and a number n as inputs
I and providing a finite subsequence of length n and colour q

It should reflect the finitary computational meaning of IPH.

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

A finitary corollary of IPH

Corollary (Unbounded Pigeon Hole Principle)
Any infinite sequence coloured with finitely many colours has a
finite monochromatic subsequence of any given length.

Proof.
Induction on n, using IPH to provide the next element in the
subsequence.
A constructive proof exists, but explicit construction is needed!

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

A finitary corollary of IPH

Corollary (Unbounded Pigeon Hole Principle)
Any infinite sequence coloured with finitely many colours has a
finite monochromatic subsequence of any given length.

Proof.
Induction on n, using IPH to provide the next element in the
subsequence.
A constructive proof exists, but explicit construction is needed!

Comparing methods for program extraction from classical proofs

A case study: Infinite Pigeon Hole Principle

A finitary corollary of IPH

Corollary (Unbounded Pigeon Hole Principle)
Any infinite sequence coloured with finitely many colours has a
finite monochromatic subsequence of any given length.

Proof.
Induction on n, using IPH to provide the next element in the
subsequence.
A constructive proof exists, but explicit construction is needed!

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c []
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c []
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c []
b []
a [0]

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c []
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c []
b [1]
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c []
b [1]
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c []
b [1]
a [2]

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c []
b [1]
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c []
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3]
b [4]
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3]
b [4,5]
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6]
b [7]
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6]
b [7]
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6]
b [7]
a [8]

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6]
b [7]
a [8,9]

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6]
b [7]
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6,10]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6,10]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6,10]
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6,10]
b []
a []

I Worst time complexity is O(nr)

I However, average time complexity is O(n · r)
I which is the same as the complexity of a naı̈ve algorithm

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6,10]
b []
a []

I Worst time complexity is O(nr)

I However, average time complexity is O(n · r)
I which is the same as the complexity of a naı̈ve algorithm

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6,10]
b []
a []

I Worst time complexity is O(nr)

I However, average time complexity is O(n · r)
I which is the same as the complexity of a naı̈ve algorithm

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

I IPH corresponds to an abstract backtracking scheme
I The type of the final result is determined by the corollary
I Extracted programs follow continuation-passing style
I Computed witnesses are immediately passed to

continuations
I Case distinctions on decidable definite formulas determine:

I Should we accept the witness (identity)
I or should we backtrack (call an alternative continuation)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

I IPH corresponds to an abstract backtracking scheme
I The type of the final result is determined by the corollary
I Extracted programs follow continuation-passing style
I Computed witnesses are immediately passed to

continuations
I Case distinctions on decidable definite formulas determine:

I Should we accept the witness (identity)
I or should we backtrack (call an alternative continuation)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

I IPH corresponds to an abstract backtracking scheme
I The type of the final result is determined by the corollary
I Extracted programs follow continuation-passing style
I Computed witnesses are immediately passed to

continuations
I Case distinctions on decidable definite formulas determine:

I Should we accept the witness (identity)
I or should we backtrack (call an alternative continuation)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

I IPH corresponds to an abstract backtracking scheme
I The type of the final result is determined by the corollary
I Extracted programs follow continuation-passing style
I Computed witnesses are immediately passed to

continuations
I Case distinctions on decidable definite formulas determine:

I Should we accept the witness (identity)
I or should we backtrack (call an alternative continuation)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

I IPH corresponds to an abstract backtracking scheme
I The type of the final result is determined by the corollary
I Extracted programs follow continuation-passing style
I Computed witnesses are immediately passed to

continuations
I Case distinctions on decidable definite formulas determine:

I Should we accept the witness (identity)
I or should we backtrack (call an alternative continuation)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

I IPH corresponds to an abstract backtracking scheme
I The type of the final result is determined by the corollary
I Extracted programs follow continuation-passing style
I Computed witnesses are immediately passed to

continuations
I Case distinctions on decidable definite formulas determine:

I Should we accept the witness (identity)
I or should we backtrack (call an alternative continuation)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

I IPH corresponds to an abstract backtracking scheme
I The type of the final result is determined by the corollary
I Extracted programs follow continuation-passing style
I Computed witnesses are immediately passed to

continuations
I Case distinctions on decidable definite formulas determine:

I Should we accept the witness (identity)
I or should we backtrack (call an alternative continuation)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b []
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b []
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b []
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b []
a [0]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b []
a [0,1]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b []
a [0,1,2]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b []
a [0,1,2]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b [1]
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b [1]
a [2]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b [1]
a [2,3]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b [1]
a [2,3,4]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b [1,4]
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b [1,4]
a [5]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b [1,4]
a [5,6]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b [1,4]
a [5,6,7]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b [1,4,7]
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c []
b [1,4,7]
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b []
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b []
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b []
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b []
a [5]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b []
a [5,6]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b []
a [5,6,7]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b [7]
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b [7]
a [8]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b [7]
a [8,9]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b [7]
a [8,9,10]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b [7,10]
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b [7,10]
a [11]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b [7,10]
a [11,12]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b [7,10]
a [11,12,13]

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
b [7,10,13]
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4,13]
b []
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4,13]
b []
a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr)

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

I IPH corresponds to a concrete backtracking scheme
I Program for IPH expects a “challenging” function
I Programs return

I Candidate for a witness
I Candidate for a counterexample

I Backtracking is controlled by checking counterexamples:
I If the counterexample is valid, the witness is not correct —

backtrack
I If the counterexample is not valid, return the witness

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

I IPH corresponds to a concrete backtracking scheme
I Program for IPH expects a “challenging” function
I Programs return

I Candidate for a witness
I Candidate for a counterexample

I Backtracking is controlled by checking counterexamples:
I If the counterexample is valid, the witness is not correct —

backtrack
I If the counterexample is not valid, return the witness

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

I IPH corresponds to a concrete backtracking scheme
I Program for IPH expects a “challenging” function
I Programs return

I Candidate for a witness
I Candidate for a counterexample

I Backtracking is controlled by checking counterexamples:
I If the counterexample is valid, the witness is not correct —

backtrack
I If the counterexample is not valid, return the witness

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

I IPH corresponds to a concrete backtracking scheme
I Program for IPH expects a “challenging” function
I Programs return

I Candidate for a witness
I Candidate for a counterexample

I Backtracking is controlled by checking counterexamples:
I If the counterexample is valid, the witness is not correct —

backtrack
I If the counterexample is not valid, return the witness

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

I IPH corresponds to a concrete backtracking scheme
I Program for IPH expects a “challenging” function
I Programs return

I Candidate for a witness
I Candidate for a counterexample

I Backtracking is controlled by checking counterexamples:
I If the counterexample is valid, the witness is not correct —

backtrack
I If the counterexample is not valid, return the witness

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

I IPH corresponds to a concrete backtracking scheme
I Program for IPH expects a “challenging” function
I Programs return

I Candidate for a witness
I Candidate for a counterexample

I Backtracking is controlled by checking counterexamples:
I If the counterexample is valid, the witness is not correct —

backtrack
I If the counterexample is not valid, return the witness

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

I IPH corresponds to a concrete backtracking scheme
I Program for IPH expects a “challenging” function
I Programs return

I Candidate for a witness
I Candidate for a counterexample

I Backtracking is controlled by checking counterexamples:
I If the counterexample is valid, the witness is not correct —

backtrack
I If the counterexample is not valid, return the witness

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

I IPH corresponds to a concrete backtracking scheme
I Program for IPH expects a “challenging” function
I Programs return

I Candidate for a witness
I Candidate for a counterexample

I Backtracking is controlled by checking counterexamples:
I If the counterexample is valid, the witness is not correct —

backtrack
I If the counterexample is not valid, return the witness

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Is optimisation possible?

I The complexity is high, because we wait for the last failure
index

I What if we changed the program to find the first failure
index instead?

I Returned subsequences will be the same as with the
A-translation program!

I But time complexity is still O(nr)

I Even though we return the first failure index, we recheck its
validity on every step

I To obtain faster programs we need to optimise the
extraction method internally

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Is optimisation possible?

I The complexity is high, because we wait for the last failure
index

I What if we changed the program to find the first failure
index instead?

I Returned subsequences will be the same as with the
A-translation program!

I But time complexity is still O(nr)

I Even though we return the first failure index, we recheck its
validity on every step

I To obtain faster programs we need to optimise the
extraction method internally

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Is optimisation possible?

I The complexity is high, because we wait for the last failure
index

I What if we changed the program to find the first failure
index instead?

I Returned subsequences will be the same as with the
A-translation program!

I But time complexity is still O(nr)

I Even though we return the first failure index, we recheck its
validity on every step

I To obtain faster programs we need to optimise the
extraction method internally

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Is optimisation possible?

I The complexity is high, because we wait for the last failure
index

I What if we changed the program to find the first failure
index instead?

I Returned subsequences will be the same as with the
A-translation program!

I But time complexity is still O(nr)

I Even though we return the first failure index, we recheck its
validity on every step

I To obtain faster programs we need to optimise the
extraction method internally

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Is optimisation possible?

I The complexity is high, because we wait for the last failure
index

I What if we changed the program to find the first failure
index instead?

I Returned subsequences will be the same as with the
A-translation program!

I But time complexity is still O(nr)

I Even though we return the first failure index, we recheck its
validity on every step

I To obtain faster programs we need to optimise the
extraction method internally

Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

Is optimisation possible?

I The complexity is high, because we wait for the last failure
index

I What if we changed the program to find the first failure
index instead?

I Returned subsequences will be the same as with the
A-translation program!

I But time complexity is still O(nr)

I Even though we return the first failure index, we recheck its
validity on every step

I To obtain faster programs we need to optimise the
extraction method internally

Comparing methods for program extraction from classical proofs

Conclusions and further work

Conclusion

I Programs from classical proofs are backtracking schemes
I A-translation extracts an abstract backtracking scheme
I Dialectica extracts a concrete backtracking scheme
I Methods control the backtracking process in specific ways
I Dialectica needs optimisation to match A-translation
I Extract from Ramsey’s theorem

Comparing methods for program extraction from classical proofs

Conclusions and further work

Conclusion

I Programs from classical proofs are backtracking schemes
I A-translation extracts an abstract backtracking scheme
I Dialectica extracts a concrete backtracking scheme
I Methods control the backtracking process in specific ways
I Dialectica needs optimisation to match A-translation
I Extract from Ramsey’s theorem

Comparing methods for program extraction from classical proofs

Conclusions and further work

Conclusion

I Programs from classical proofs are backtracking schemes
I A-translation extracts an abstract backtracking scheme
I Dialectica extracts a concrete backtracking scheme
I Methods control the backtracking process in specific ways
I Dialectica needs optimisation to match A-translation
I Extract from Ramsey’s theorem

Comparing methods for program extraction from classical proofs

Conclusions and further work

Conclusion

I Programs from classical proofs are backtracking schemes
I A-translation extracts an abstract backtracking scheme
I Dialectica extracts a concrete backtracking scheme
I Methods control the backtracking process in specific ways
I Dialectica needs optimisation to match A-translation
I Extract from Ramsey’s theorem

Comparing methods for program extraction from classical proofs

Conclusions and further work

Conclusion

I Programs from classical proofs are backtracking schemes
I A-translation extracts an abstract backtracking scheme
I Dialectica extracts a concrete backtracking scheme
I Methods control the backtracking process in specific ways
I Dialectica needs optimisation to match A-translation
I Extract from Ramsey’s theorem

Comparing methods for program extraction from classical proofs

Conclusions and further work

Conclusion

I Programs from classical proofs are backtracking schemes
I A-translation extracts an abstract backtracking scheme
I Dialectica extracts a concrete backtracking scheme
I Methods control the backtracking process in specific ways
I Dialectica needs optimisation to match A-translation
I Extract from Ramsey’s theorem

Comparing methods for program extraction from classical proofs

Conclusions and further work

Thank you

Thank you for your attention!

	Constructive and classical logic
	Refined A-translation
	Dialectica interpretation
	A case study: Infinite Pigeon Hole Principle
	Extracting from the Infinite Pigeon Hole principle
	Conclusions and further work

