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Comparing methods for program extraction from classical proofs

Constructive and classical logic

Negative Arithmetic (NAω)

We consider the negative fragment of Heyting Arithmetic.

A,B ::= P(~t) | at(bB) | A→ B | A ∧ B | ∀xA | ∃xA

¬A ::= A→ ⊥
∃̃xA ::= ¬∀x¬A

We obtain HAω by adding the strong existential ∃.
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Constructive and classical logic

Weak and strong existence

I ∃xA
I To prove: show t and prove A(t)

I ∃̃xA
I To prove: assume u : ∀x(A→ ⊥) and show ⊥

Weak existence proofs contain implicit computational content.
Simple idea: look which term t is used with the assumption u.
But: u can be used many times with different terms!
Idea: Try to keep track of all terms used for u.
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Constructive and classical logic

Boolean falsity

Using a general predicate variable ⊥ we work in a minimal logic
setting. We denote the system as HAω

0 .
However, if we use decidable falsity F := at(ff), we are able to
prove by induction on the definition of formulas

Lemma (ex falso quodlibet)
HAω ` F→ A

Lemma (stability)
NAω ` ((A→ F)→ F)→ A
if A contains no predicate variables.
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A-translation

Idea: use ⊥ to extract computational content of proofs in NAω.

Theorem (Extraction via A-translation)
Let M be a proof of

HAω
0 ` D → ∃̃yρG

with D,G not containing ⊥. Then

HAω ` D → ∃yG

Idea.
Let M ′ := M

[
⊥ := ∃yG

]
. A witness for y is [[M ′]](λyy).
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Refined A-translation

Definite and goal formulas

What if ⊥ appears in D or G?
Bucholz, Berger, Schwichtenberg (2000), Seisenberger (2008):

D ::= P | G→ D (if τ(D) = ε then τ(G) = ε)
| D1 ∧ D2 (if τ(D1) 6= ε then τ(D2) = ε)
| ∀xD

G ::= P | D → G (if τ(G) 6= ε and τ(D) = ε then D decidable)
| G1 ∧G2
| ∀xG (if τ(G) = ε)
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Dialectica interpretation

Let us have a proof of B from the assumption A.
I In case A is true, we have a function producing a witness

for B from a witness for A
I In case B is false, we have a counterexample for A

depending on a counterexample for B
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Dialectica interpretation

Contractions in Dialectica

I When A was used more than once, we have a
counterexample for each separate use

I Still we need to choose only one of them
I We need to be able to decide which instance of the

assumption A was false
I Other approaches — finite set of solutions (Diller-Nahm,

1974), monotone Dialectica (Kohlenbach, 1993)
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A case study: Infinite Pigeon Hole Principle

The Infinite Pigeon Hole Principle

Theorem (Infinite Pigeon Hole (IPH) Principle)
Any infinite sequence coloured with finitely many colours has
an infinite monochromatic subsequence.
Formalisation:

∀r∀f
(
∀n(fn < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)
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A case study: Infinite Pigeon Hole Principle

Proof of IPH

∀r∀f
(
∀k (fk < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)
Proof.
Induction on r .

I When r = 0 we have a false premise.
I Assume the claim for r , and take f with r + 1 colours.
I A case distinction on “the colour r appears infinitely often”:

I If yes, then we have found a monochromatic subsequence
I If not, we take the subsequence after the last appearance

of the colour r and apply the induction hypothesis
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A case study: Infinite Pigeon Hole Principle

IPH is non-constructive

∀r∀f
(
∀k (fk < r)→ ∃̃q∀n∃̃m(m ≥ n ∧ fm = q)

)
Thus, we cannot have a program

I taking r and f as inputs
I and providing an infinite subsequence fm of colour q

But: we can have a program
I taking r , f and a number n as inputs
I and providing a finite subsequence of length n and colour q

It should reflect the finitary computational meaning of IPH.
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A finitary corollary of IPH

Corollary (Unbounded Pigeon Hole Principle)
Any infinite sequence coloured with finitely many colours has a
finite monochromatic subsequence of any given length.

Proof.
Induction on n, using IPH to provide the next element in the
subsequence.
A constructive proof exists, but explicit construction is needed!
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Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c []
b []
a []

I When a higher colour occurs, lists of lower colours are
reset

I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs
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I between which no higher colour occurs
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Color List
c [3,6,10]
b []
a []

I When a higher colour occurs, lists of lower colours are
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I The program returns the smallest possible indices of the
same colour

I between which no higher colour occurs



Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

a b a c b b c b a a c . . .

Color List
c [3,6,10]
b []
a []
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same colour

I between which no higher colour occurs
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A-translation: Specific features

I IPH corresponds to an abstract backtracking scheme
I The type of the final result is determined by the corollary
I Extracted programs follow continuation-passing style
I Computed witnesses are immediately passed to

continuations
I Case distinctions on decidable definite formulas determine:

I Should we accept the witness (identity)
I or should we backtrack (call an alternative continuation)
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Color List
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I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr )
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Dialectica: Example run

a b a b c b c b a a c b a c . . .

Color List
c [4]
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a []

I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
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Color List
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I For each colour we store the last failure index
I and use it as a candidate witness for the higher colour
I Both worst and average time complexity are O(nr )
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I For each colour we store the last failure index
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Comparing methods for program extraction from classical proofs

Extracting from the Infinite Pigeon Hole principle
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I IPH corresponds to a concrete backtracking scheme
I Program for IPH expects a “challenging” function
I Programs return

I Candidate for a witness
I Candidate for a counterexample

I Backtracking is controlled by checking counterexamples:
I If the counterexample is valid, the witness is not correct —

backtrack
I If the counterexample is not valid, return the witness
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Is optimisation possible?

I The complexity is high, because we wait for the last failure
index

I What if we changed the program to find the first failure
index instead?

I Returned subsequences will be the same as with the
A-translation program!

I But time complexity is still O(nr )

I Even though we return the first failure index, we recheck its
validity on every step

I To obtain faster programs we need to optimise the
extraction method internally
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Conclusion
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Conclusions and further work

Thank you

Thank you for your attention!
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