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Adding integers

3287648732782634093274983274987329847234

♢♢♢♢♢♢♢♢♢♢♢♢49823749871107407344398738
3287648732782683917024854382394674245972

Question

What other structures have nice encodings that make the
operations similarly simple to compute (using only local
information)?
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Automatic structures

Definition (Khoussainov–Nerode)

A countable relational structure (M;R1, . . . , Rk) is called automatic
if there exists a finite alphabet Σ, a regular language D ⊆ Σ∗, and a
bijection f ∶D → M such that the relations f −1(R1), . . . , f −1(Rk) are
regular.

▸ We can also include languages with function symbols by
considering the graphs of the functions.

▸ What does it mean for f −1(Ri) to be regular?

f −1(Ri) ⊆ Ds ⊆ (Σ∗)s ↪ ((Σ ∪ {◇})s)∗.

▸ f may only be a surjection but then f −1(=)must be regular.
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Basic properties

Regular languages are stable under Boolean operations and
projections, so, in particular, for every first order formula ϕ(x̄), the
set

Aϕ = {ā ∈ Ds ∶ M ⊧ ϕ( f (ā))}

is regular.

Moreover, there is a simple algorithm that computes an automaton
recognizing Aϕ from the automata defining the structure and ϕ.

This property distinguishes automatically presentable structures
from recursively presentable ones (whose theories are, in general,
not decidable).
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Very few automatic structures

If one allows rich algebraic structure in the language, the only
automatic structures are the trivial ones:
▸ (Khoussainov–Nies–Rubin–Stephan) every infinite automatic

Boolean algebra is a finite product of copies of the algebra of
all finite and cofinite subsets ofN;

▸ (KNRS) every automatic integral domain is finite.

For groups, one has the following:
▸ (Oliver–Thomas) A finitely generated group is automatic iff it is
abelian-by-finite (has an abelian subgroup of finite index).
This is a simple consequence of Gromov’s theorem and a
theorem of Romanovskiĭ characterizing the polycyclic-by-finite
groups with a decidable first order theory.

▸ (Nies–Thomas) Every finitely generated subgroup of an
automatic group is abelian-by-finite.

Those results show that the natural class to restrict one’s attention
to is the class of abelian groups.
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Automatic abelian groups

Examples of automatic groups:
▸ Z;
▸ (Z/pZ)<ω;
▸ Z(p∞) = {x ∈ Q/Z ∶ ∃n pn ⋅ x = 0};
▸ Z[1/m] = {a/mk ∶ a, k ∈ Z};
▸ finite direct sums of those;
▸ (Nies–Semukhin) finite extensions and “automatic

amalgamations,” for example,

⟨p−∞1 e1, p−∞2 e2, q−∞(e1 + e2)⟩ ≤ Q2, whereQ2 = ⟨e1, e2⟩.

Non-examples (Khoussainov–Nies–Rubin–Stephan):
▸ every group containing Z<ω;
▸ Z(p∞)<ω.
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The additive group of the rationals

Question (Khoussainov, 1996)

Does the additive group ofQ admit an automatic presentation?

Theorem
No.

The answer is not particularly surprising but new techniques were
needed to prove the result.
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Basic limitations of automatic structures

For D ⊆ Σ∗, let D≤n = {w ∈ D ∶ len(w) ≤ n}.

Lemma
Suppose that Z is an automatic abelian group, where addition is
recognized by an automaton of size k. Then for every x , y ∈ Z,

len(x + y) ≤max{len(x), len(y)} + k.

Hence, D≤n + D≤n ⊆ D≤n+k for all n.

Lemma
If D is a regular language, then for each k, there exists C such that
∣D≤n+k ∣ ≤ C∣D≤n∣ for all n.

In particular, ∣D≤n + D≤n∣ ≤ C∣D≤n∣.
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Additive sets with small sumsets

What are the finite sets A ⊆ Z for which the sumset A+ A is small?

Since for a “random” set A ⊆ Z, ∣A+ A∣ ∼ ∣A∣2, a natural notion of
smallness is ∣A+ A∣ = O(∣A∣).

Examples:
▸ Arithmetic progressions:

A = {0, 1, 2, 3, 4, 5}, A+ A = {0, . . . , 10}, ∣A+ A∣ ∼ 2∣A∣;

▸ More generally, multidimensional progressions:

A = {0, 1, 2, 10, 11, 12, . . . , 90, 91, 92}, ∣A+ A∣ ∼ 22∣A∣.

Quite amazingly, these are essentially the only examples.
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Freiman’s theorem

A progression in an abelian group G is a triple (S , P, ϕ), where S is a
parallelepiped in Zd ([0,N1) ×⋯ × [0,Nd)), P ⊆ G and ϕ∶ S → P is an
affine surjection:

P = ϕ(S) = {v0 +
d
∑
i=1

aivi ∶ 0 ≤ ai < Ni}, where v0, v1, . . . , vd ∈ G .

The number d is called the rank of the progression.

Theorem (Freiman, 1966)

Let C > 0. Then there exist constants K and d such that for every
torsion-free abelian group G and for all finite sets A ⊆ G such that
∣A+ A∣ < C∣A∣, there exists a progression P of rank at most d such
that P ⊇ A and ∣P∣/∣A∣ ≤ K.
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Automatic groups and progressions

Hence, we can conclude that for any torsion-free abelian group, the
sets D≤n are (efficiently contained in) progressions of bounded rank.

In this way, one can see immediately that any group of infinite rank
is not automatic: indeed, if P ⊆ G is a progression of rank d, then
rank⟨P⟩ ≤ d + 1, so it is not possible that progressions of bounded
rank exhaust a group of infinite rank.

Even thoughQ has rank 1, one can exploit divisibility by large
primes to produce a contradiction.

For example, consider the following progression:

{0, 1, 2, 3, . . . , 100}.

Now it is difficult to contain the resulting set in a 1-dimensional
progression.
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Open questions

The proof shows that the following groups are not automatic:
▸ torsion-free groups that are p-divisible for infinitely many

primes p;
▸ torsion groups of the form⊕p∈I Z(p∞), where I is an infinite

set of primes (in particular,Q/Zwhen one takes I to be the set
of all primes).

However, it remains open whether the following group of rank 1 is
automatic:

⟨1/p ∶ p prime⟩ ≤ Q.

It is also perhaps not infeasible to characterize all automatic abelian
groups; this would give an interesting class of “finitistic” abelian
groups (groups of finite rank that only “use finitely many primes” in
their definition).
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