Splitting properties in 2-c.e. degrees.

M.M. Yamaleev

Kazan State University, Kazan
Definitions and conventions.

All sets are subsets of the set of natural numbers $\omega = \{0, 1, 2\ldots\}$. If a set $A \subseteq \omega$ is Turing reducible to $B \subseteq \omega$ then we denote $A \leq_T B$.

$A \equiv_T B$ iff $A \leq_T B$ and $B \leq_T A$.

$a = \text{deg}(A) = \{B \mid B \equiv_T A\}$.

The degrees with "\leq" and "\cup" form an upper semilattice, where $a \cup b = \text{deg}(A \oplus B)$ and $A \oplus B = \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}$.

Also in this structure a jump operator is defined such that $b \leq a \rightarrow b' \leq a'$.
We will consider only Turing degrees \(\leq 0' \), where \(0' = \text{deg}(K) \) is the degree of halting problem.

Let a set \(A \leq_T K \), so \(A(x) = \lim_{s} f(x, s) \), \(f(x, 0) = 0 \), where \(f \) is a computable function. A set \(A \) is \(n \)-computable enumerable (c.e.), if for any \(x \) \(|\{s | f(x, s) \neq f(x, s + 1)\}| \leq n \). The degree of the set \(a = \text{deg}(A) \) is \(n \)-c.e.; if it also doesn't consist \((n - 1)\)-c.e. sets, then is has a properly \(n \)-c.e. degree.
Definition. Degree a is splittable in a class of degrees \mathcal{C} if there exist degrees $x_0, x_1 \in \mathcal{C}$ such that $a = x_0 \cup x_1$ and $x_0, x_1 < a$.

Definition. For a given degrees x and y we say that that the degree x avoids the upper (lower) cone of y if $y \not\leq x$ ($x \not\leq y$).

Given degrees $0 < b < a$ and a splitting of $a = x_0 \cup x_1$

Definition. If $b \not\leq x_i (i = 0, 1)$ then a is splittable avoiding upper cone of b.

Definition. If $b \leq x_i (i = 0, 1)$ then a is splittable above b.
By default we assume that C is the smallest class containing a. E.g., in the finite levels of Ershov’s hierarchy we usually try to split in the same level.
[Sacks, 1963] Splitting of c.e. degrees (can be generalized to avoid upper cone of any noncomputable Δ_2^0-degree).

[Robinson, \approx 1970] Splitting of c.e. degrees above low c.e. degrees.

Another direction of research is splitting with avoiding cones. Theorem 1 provides sufficient conditions for a properly 2-c.e. degree a to be splitted avoiding upper cone of Δ^0_2 degree d. In general case it’s not possible since to the theorem of Arslanov, Kalimullin and Lempp (also it follows from the theorem of Cooper and Li or Thereom 3 provided below).
[Arslanov, Kalimullin, Lempp, 2003] There exist noncomputable 2-c.e. degrees $b < a$ such that for any 2-c.e. degree v: $v \leq a \rightarrow ([v \leq b] \lor [b \leq v])$.

It is known as "bubble". Notice, that the middle degree b is c.e. degree.
[Cooper, Li, 2004] For any $n \geq 2$ there exist n-c.e. degree a, c.e. degree b such that $0 < b < a$ and such that for any n-c.e. degrees x_0 and x_1: $a = x_0 \cup x_1 \rightarrow ([b \leq x_0] \lor [b \leq x_1]$).
Sufficient conditions for a 2-c.e. degree a to be splittable avoiding upper cone of Δ^0_2 degree below it.

Theorem 1. Let a and d be properly 2-c.e. degrees such that $0 < d < a$ and there are no c.e. degrees between a and d. Then a is splittable avoiding upper cone of d.

![Diagram showing the relationship between $0'$, a, d, x_0, and x_1.]
Theorem 1 generalizes Cooper's splitting theorem in 2-c.e. degrees. Also it generalizes Sacks's splitting theorem in c.e. degrees in the following sense: we can consider 2-c.e. degrees instead of c.e. and c.e. degree instead of computable degree (we will have the same type of isolating).

The question arises about a characterization, which could express the isolation in terms of splitting and vice versa. One may assume that if a 2-c.e. degree a above d is splittable avoiding the upper cone of d then there are no c.e. degrees between d and a. The above mentioned "the bubble existence theorem" can be considered as a confirmation of this assumption. But Theorem 2 shows that this doesn't hold.
Theorem 2. There exist a c.e. degree b, 2-c.e. degrees d, a, x_0, x_1 such that $0 < d < b < a$, $a = x_0 \cup x_1$, $x_0 < a$, $x_1 < a$, $d \not\leq x_0$, $d \not\leq x_1$ and d and a have properly 2-c.e. degrees.
Sketch of the proof of Theorem 2.

Note that considering a c.e. degree c instead of the degree d we can construct sets A, B, C, X_0, X_1 and assign corresponding degrees $c = \deg(C)$, $b = \deg(C \oplus B)$, $a = \deg(C \oplus B \oplus A)$, $x_0 = \deg(X_0)$, $x_1 = \deg(X_1)$. Then it follows from the weak density theorem (Cooper, Lempp, Watson, 1989]) that there exists a properly 2-c.e. degree d such that $c < d < b$. The degree d is the desired degree.

Therefore, it’s enough to construct sets A, B, C, X_0, X_1, satisfying the following requirements (we construct sets X_0, X_1 avoiding the lower cone of C for uniformity).
\(R_e : \quad X_0 \oplus X_1 \not\equiv_T W_e \;
\)

\(S_{2e}^C : \quad X_0 \neq \Phi_e^C \;
\)

\(S_{2e+1}^C : \quad X_1 \neq \Phi_e^C \;
\)

\(S_{2e}^X : \quad C \neq \Phi_e^{X_0} \;
\)

\(S_{2e+1}^X : \quad C \neq \Phi_e^{X_1} \;
\)

\(N_e : \quad B \neq \Phi_e^C \;
\)

\(T : \quad B \oplus C \leq_T X_0 \oplus X_1 \).

For the requirement \(T \) we define
\[A = X_0 \oplus X_1 \]
and
\[\deg(C \oplus B \oplus A) = \deg(A). \]

The strategy for the requirement \(S_{2e}^X \)
takes in attention the requirement \(T \).
Assigning a witness \(y \) we define a computable
function-marker \(\alpha(y) \), and enumerating
\(y \) into \(C \) we enumerate the marker \(\alpha(y) \)
into \(X_1 \). The same for requirements \(N_e \).
Corollaries of Theorem 1.

Middle of the "bubble" is c.e. degree. Proof.

1) There no c.e. degrees between d and b, otherwise we can split it by Sacks's splitting theorem.

2) If d has properly 2-c.e. degree then we apply theorem 1 and the previous statement 1. So, contradiction again.
There are no "3-bubbles" in 2-c.e. degrees. Because of previous corollary the degrees a and b are c.e. So, we can apply to a Sacks's splitting theorem.
Definition.

A set A is low if $A' \equiv_T K$. A set A is n-low for $n > 1$ if $A^{(n)} \equiv_T K^{(n-1)}$. Respectively degrees $a = \deg(A)$ are low (n-low).

The following theorem shows that "bubble" could be constructed in low 2-c.e. degrees.
Theorem 3. There exist low noncomputable 2-c.e. degrees $b < a$ such that for any 2-c.e. degree $v \leq a$ either $v \leq b$ or $b \leq v$.

![Diagram showing a partial order with nodes labeled low 2-c.e. a, low 2-c.e. b, and 0, with arrows indicating the order relations \leq.](image)
Theorem 3 with Sacks’s splitting theorem lead to the elementary difference of partial orders of low c.e. and low 2-c.e degrees. Moreover, since every 1-low degree is \(n \)-low for any \(n > 1 \) partial orders of \(n \)-low c.e. and \(n \)-low 2-c.e. degrees are not elementarily equivalent.

[Downey, Stob, 1993],[Downey, Yu, 2004] noticed that the question in the case of 2-low was open.
The following sentence φ shows that these partial orders are not elementarily equivalent.

$$\varphi = \exists a, \ b \forall v (0 < b < a) \land [(v \leq a) \rightarrow (b \leq v) \lor (v \leq b)].$$

[Faizrahmanov, 2008] in the case of 1-low c.e. and 1-low 2-c.e. degrees also get elementary difference. And another way to proof this result uses strongly noncuppability in 1-low c.e. degrees.

But these couldn’t be applied immediately for the general case of n-low degrees.
Some observation in n-c.e. degrees.

Theorem 4. Let a and d be properly n-c.e. and properly k-c.e. degrees, respectively, such that $k \geq n$, $0 < d < a$ and there are no $(n - 1)$-c.e. degrees between a and d. Then a is splittable avoiding upper cone of d.
Corollary 1*. If $b < a_0$ are properly k-c.e. and properly m_0-c.e. degrees, respectively, and if they form "bubble" in n-c.e. degrees (for some $n \geq \max(k, m_0)$) then $k < m_0$.

Proof. Every n-c.e. degree strictly between b and a_0 also forms "bubble" with b in n-c.e. degrees. Clear, that there exist properly m-c.e. ($m \leq m_0$) degree a such that there no $(m-1)$-c.e. degrees between b and a. So, if $k \geq m_0$ then $k \geq m$ and by Theorem 4* a is splittable in m-c.e. degrees avoiding upper cone of b. Contradiction with the "bubble".
\[m_0 \text{-c.e. } a_0 \]
\[m \text{-c.e. } a \]
\[k \geq m \]
\[k \text{-c.e. } b \]
\[n \text{-c.e.} \]
Definition. Degrees a_1, a_2, ..., a_n form "n-bubble" ($n > 2$) in a class of degrees C if $a_i \in C, (i = 1, ..., n)$, $0 < a_1 < a_2 < ... < a_n$, the degrees a_1, a_2, ..., a_{n-1} form "$(n-1)$-bubble" and every degree from C and below a_n is comparable with a_{n-1}.
By corollary 2* "n-bubbles" could be only of the following type.

```
\[ (n - 1)\text{-c.e. } a_{n-1} \]
```

```
\[ \text{n-c.e. } a_n \]
```

```
\[ \text{2-c.e. } a_2 \]
```

```
\[ \text{1-c.e. } a_1 \]
```

```
\[ 0 \quad 0' \]
```

\[(n - 1)\text{-c.e. } a_{n-1} \]

```
\[ \text{2-c.e. } a_2 \]
```

```
\[ \text{1-c.e. } a_1 \]
```

\[0 \quad 0' \]
Corollary 2*. There are no
\((n + 1)\)-bubbles" in \(n\)-c.e. degrees

Proof. Let \(P(a)\) be a function such that \(P(a) = k\) where \(a\) is properly \(k\)-c.e.
degree. If \(a_1, a_2, \ldots, a_{n+1}\) form "\((n+1)\)-bubble" in \(n\)-c.e. degrees, then
\[P(a_1) < P(a_2) < \ldots < P(a_{n+1}) \leq n. \]
This involves that \(P(a_1) \leq 0\). Contradiction.

Also we can see that "\(n\)-bubble" in \(n\)-c.e. degrees is unique (if it exists).

So, if such "\(n\)-bubble" exists and if Theorem 4* holds then we get that \(n\)-c.e. and
\(m\)-c.e. degrees are not elementarily equivalent for any \(n \neq m\).

Question. Does "\(n\)-bubble" exist in \(n\)-c.e. degrees?
THANK YOU FOR ATTENTION!