Strongly η-representable sets and limitwise monotonic functions.

Maxim Zubkov

Kazan State University

Sofia, August 5, 2009.
Let \(\{a_0, a_1, a_2, \ldots\} \) be an enumeration (perhaps with repetitions) of a set \(A \subseteq \omega \). Then

- a linear order \(\mathcal{L} \) of the following order type

\[\eta + a_0 + \eta + a_1 + \eta + a_2 + \eta + \ldots \]

is called an \textit{\(\eta \)-representation of} \(A \);

- if \(a_0 \leq a_1 \leq a_2 \ldots \) then \(\mathcal{L} \) is called an \textit{increasing \(\eta \)-representation of} \(A \);

- if \(a_0 < a_1 < a_2 \ldots \) then \(\mathcal{L} \) is called a \textit{strong \(\eta \)-representation of} \(A \);

- a set \(A \) is \(\eta \)-representable (increasing \(\eta \)-representable, strongly \(\eta \)-representable) if it has a computable \(\eta \)-representation (increasing \(\eta \)-representation, strong \(\eta \)-representation).
[Feiner] Every η-representable set is Σ^0_3.

[Lerman] The class of η-representable Turing degrees is the class of Σ^0_3 degrees.

[Rosenstein] Every Σ^0_2 set has a computable strong η-representation.

[Fellner] Every Π^0_2 set has a computable strong η-representation.

[Rosenstein] If A has a computable strongly η-representation then A is Δ^0_3.

[Lerman] There is a Δ^0_3 set which has no computable η-representation.
[Downey] Which degree contains strongly η-representable sets? In particular, is each Δ^0_3 degrees strongly η-representable?

[Harris] There is a Δ^0_3 degree without strongly η-representable sets.
[Downey] Which degree contains strongly η-representable sets? In particular, is each Δ^0_3 degrees strongly η-representable?

[Harris] There is a Δ^0_3 degree without strongly η-representable sets.
Theorem (with A. N. Frolov)

If $A \in \Delta^0_3$ then $A \oplus \omega$ is increasing η-representable.
Theorem (with A. N. Frolov)

If $A \in \Delta^0_3$ then $A \oplus \omega$ is increasing η-representable.

Theorem

A set A is increasing η-representable iff A is η-representable and $A \in \Delta^0_3$.

Strongly η-representable sets and limitwise monotonic functions.
Theorem (with A. N. Frolov)

If $A \in \Delta^0_3$ then $A \oplus \omega$ is increasing η-representable.

Theorem

A set A is increasing η-representable iff A is η-representable and $A \in \Delta^0_3$.
Theorem (with A. N. Frolov)

If $A \in \Delta^0_3$ then $A \oplus \omega$ is increasing η-representable.

Theorem

A set A is increasing η-representable iff A is η-representable and $A \in \Delta^0_3$.
Definition
A function \(F \) is called \(0' \)-limitwise monotonic if there is a \(0' \)-computable function \(f \) such that:
1) (\(\forall x \))\([\lim_s f(x, s) = F(x)]\)
2) (\(\forall x \))(\(\forall s \))[\(f(x, s) \leq f(x, s + 1) \)].
Definition
A function F is called $0'$-limitwise monotonic if there is a $0'$-computable function f such that:
1) $(\forall x)[\lim_s f(x, s) = F(x)]$
2) $(\forall x)(\forall s)[f(x, s) \leq f(x, s + 1)].$

Theorem (Harris; Kach, Turetsky)
Let F be a function with computable domain, then TFAE:
1) The function F is $0'$-limitwise monotonic.
2) There is a computable function f such that
 $F(x) = \lim_{s \to \infty} \inf f(x, s)$ for every $x \in \text{dom}(F).$
Strongly \(\eta \)-representable sets and limitwise monotonic functions.

Definition
A function \(F \) is called \(0' \)-limitwise monotonic if there is a \(0' \)-computable function \(f \) such that:
1) \((\forall x)[\lim_s f(x, s) = F(x)]\)
2) \((\forall x)(\forall s)[f(x, s) \leq f(x, s + 1)]\).

Theorem (Harris; Kach, Turetsky)

Let \(F \) be a function with computable domain, then TFAE:
1) The function \(F \) is \(0' \)-limitwise monotonic.
2) There is a computable function \(f \) such that \(F(x) = \lim_{s \to \infty} \inf f(x, s) \) for every \(x \in \text{dom}(F) \).
Definition
A function F is called $0'$-limitwise monotonic if there is a $0'$-computable function f such that:
1) $(\forall x)[\lim_s f(x, s) = F(x)]$
2) $(\forall x)(\forall s)[f(x, s) \leq f(x, s + 1)]$.

Theorem (Harris; Kach, Turetsky)
Let F be a function with computable domain, then TFAE:
1) The function F is $0'$-limitwise monotonic.
2) There is a computable function f such that $F(x) = \lim_{s \to \infty} \inf f(x, s)$ for every $x \in \text{dom}(F)$.

Theorem (Harris)
A set A is η-representable iff $A = \text{rang}(F)$ for some $0'$-limitwise monotonic function F.

Theorem (Harris)
There is a strongly η-representable set such that for every $0'$-increasing limitwise monotonic (on ω) function A we have $A \not= \text{rang}(F)$.
Definition
A set \(\text{supp}(F) = \{x \in A \mid F(x) > 1\} \) is called the support of a function \(F : A \rightarrow \omega \).

Definition
Let \(\mathcal{L} = \langle L; <_{\mathcal{L}} \rangle \) be a linear order and \(F : L \rightarrow \omega \) be a function such that for every \(n > 1 \) a set \(F^{-1}(n) = \{y \mid F(y) = n\} \) is finite. The function \(F \) is called:

- **pseudo increasing** on \(\mathcal{L} \), if
 \[
 (\forall x, y \in \text{supp}(F))[x <_{\mathcal{L}} y \Rightarrow F(x) < F(y)];
 \]
- **pseudo nondecreasing** on \(\mathcal{L} \), if
 \[
 (\forall x, y \in \text{supp}(F))[x <_{\mathcal{L}} y \Rightarrow F(x) \leq F(y)].
 \]
A set A is increasing η-representable iff there is a $0'$-limitwise monotonic pseudo nondecreasing on \mathbb{Q} function F such that $A = \text{rang}(F)$.

Theorem

Turing degree is strongly η-representable iff it contains a range of some $0'$-limitwise monotonic pseudo increasing on \mathbb{Q} function.
Theorem
If $A \in \Sigma_2^0$ and $B \in \Pi_2^0$ then $A \cup B$ has a computable η-representation.

Theorem
Let $h : \omega \times \omega \rightarrow \{0, 1\}$ and $n : \omega \rightarrow \omega$ be $0'$-computable functions such that for every x we have
$|\{s \in \omega \mid h(x, s) \neq h(x, s + 1)\}| \leq n(x)$.
Then there is a $0'$-limitwise monotonic pseudo increasing on \mathbb{Q} function F such that $\text{rang}(F) \equiv_T \text{graph}(H) \oplus \text{graph}(n)$, where $H(x) = \lim_{s \rightarrow \infty} h(x, s)$.

Corollary
If $A \leq_{tt} 0''$ then there is a strongly η-representable set $B \equiv_T A$.