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We study the complexity and randomness aspects of sets of natural numbers. Tra-
ditionally, computability theory is concerned with the complexity aspect. However,
computability-theoretic tools can also be used to introduce mathematical definitions of
randomness of a set; further, once defined, these notions can be studied by considering
their interplay with the complexity aspect of a set.

There is also an interaction in the converse direction: concepts and methods from
randomness enrich computability theory.

The first tutorial treats the interaction from computability to randomness. The
second and third tutorials cover the converse interaction, which is in the focus of recent
research. Most of the results can be found in [5].

A lowness property of a set B specifies a sense in which B is close to being com-
putable. One of the most striking examples of applying randomness in computability
is the discovery of lowness properties defined in a random-theoretic way. Surprisingly,
classes with very different definitions were shown to coincide. The first property defined
in this way was lowness for Martin-Löf randomness: each ML-random set is already
ML-random relative to B [4]. This property was shown to be equivalent to various
other lowness properties, such as a base for ML-randomness, and being low for weak
2-randomness. In a different vein, it is also equivalent to K-triviality [6], a property
that expresses being far from random. Before these coincidences were proven, each of
the classes was studied separately. In particular, researchers showed the existence of
a promptly simple set in the class. The cost function method arose to give a general
framework for these constructions.

Recent research centers on subclasses of the K-trivials. The following is a purely
computability-theoretic lowness property: B is strongly jump traceable if there is a
c.e. set of possible values for JB(x) that is finite of small size [2]. Nonetheless, in [1]
it was proved that the c.e. strongly jump traceable sets form a proper subideal of the
c.e. K-trivials. Recent work [3] suggests that the sets in this class are close to being
computable because, in some sense, many ML-random oracles compute them. In [3] we
prove a number of coincidences of strong jump traceability (for c.e. sets) with properties
that formalize being computed by many ML-random sets.

We also discuss the possibility of natural ideals properly in between the strongly
jump-traceable and the K-trivial c.e. sets. We look at reducibilities weaker than Turing
that induce the lowness properties above. For instance B ≤LR C means that every
C-random set is also B-random [6]. The least LR degree consists of the sets that are
low for ML-randomness. In both areas open questions abound.

Finally, we will take a look at analogs of the foregoing results for “higher” randomness
notions defined in terms of effective descriptive set theory.

There will be handouts and informal exercise sessions to make the material accessible
to students.
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