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A Possible Answer

My Main Question
What are individuals and structures in 

Modal Logic?

Lattice-valued models give a wealth of examples of 
naturally defined types with well structured individuals 

and operations and relations on them.  Experience with 
lattices (and sheaves) can then suggest further 

generalizations.  In fact, we can extend the modeling to 
a modal ZF where every formula has a probability.



What is a Lattice?
0 ≤ x ≤ 1
    

x ≤ x 
x ≤ y & y ≤ z ⇒ x ≤ z

x ≤ y & y ≤ x ⇒ x = y

x ∨ y ≤ z ⇔ x ≤ z & y ≤ z
z ≤  x ∧ y ⇔ z ≤ x & z ≤ y
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What is a Complete Lattice?

∨i∈Ixi  ≤ y ⇔ (∀i∈I) xi  ≤ y

y ≤ ∧i∈Ixi ⇔ (∀i∈I) y  ≤ xi

Note:
∧i∈Ixi = ∨{y|(∀i∈I) y  ≤ xi }



What is a Heyting Algebra?

x ≤ y→z ⇔ x ∧ y ≤  z 

What is a Boolean Algebra?

x ≤ (y→z) ∨ w ⇔ x ∧ y ≤ z ∨ w 



Theorem: Every Heyting algebra 
is distributive:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) 

Theorem: Every complete Heyting 
algebra is completely distributive:

x ∧ ∨i∈Iyi   =  ∨i∈I(x ∧yi )  

Note: The dual law does not follow for 
complete Heyting algebras.



What is a Lewis (S4) Algebra?
A Boolean algebra plus

□1 = 1

□□x = □x ≤ x 
□(x ∧ y) = □x ∧ □y

The second two laws can be combined:

□x = ∨{ y | y  = □y  ≤  x }



Ha = Heyting Algebra
cHa = Complete Heyting Algebra

Some Abbreviations

Ba = Boolean Algebra
cBa = Complete Boolean Algebra

La = Lewis Algebra
cLa = Complete Lewis Algebra



What is a Frame?
Definition.  A frame is complete lattice 

which is (∧∨)-distributive.

Theorem.  In a cLa the □-stable elements 
form a subframe.

Theorem.  In a cBa any subframe creates a cLa.

We can define: □x = ∨{y∈
 
H |  y  ≤   x }, 

   where H is the subframe.



Theorem.  Every frame can be made into a cHa.

Hint: y →z  =  ∨{x |x ∧ y ≤ z}.  

An Important Theorem

Corollary.  In a cHa every subframe can be 
regarded as a cHa (but not with the same→).

Whence comes the topological interpretation
of intuitionistic logic (Tarski/Stone).



Topology vs. Probability
Proposition.  For every topological space X, the 
powerset P(X) is a cBa, and the lattice of open 

subsets Op(X) is a cHa and a subframe. 
Note: These examples include the Kripke models.

Theorem.  For the standard probability space 
(Borel([0, 1]), µ) with Lebesgue measure µ, 

the measure algebra Borel([0, 1])/Null is a cBa, 
and the quotient Op([0, 1])/Null is a cHa 

and is a proper subframe.

Note: Call this cLa M. Think of it as a 
pointless space.



Boole vs. Heyting vs. Lewis

Theorem.  For every cHa H,  there is a 
(non-canonical) cLa L such that     

 H = {□x| x∈ 

L}.
Note: In the category of frames, the first is a 

quotient and the second a subframe.

Note: ¬ x = x →0

Theorem.  For every cBa B, there
is an interesting cHa H such that

    B = {¬¬x| x∈
 
H}.



First-Order Algebraic Semantics
      《aRb》= given
     《Φ ∧ Ψ》=《Φ》∧《Ψ》
            《Φ ∨ Ψ》=《Φ》∨《Ψ》
    《Φ → Ψ》=《Φ》→《Ψ》

                  《□Φ》= □《Φ》
《∃x.Φ(x)》= ∨a∈A《Φ(a)》
《∀x.Φ(x)》= ∧a∈A《Φ(a)》



Structure of the Measure Algebra

Note: Using the measure algebra, every modal logical 
formula has a probability.  Owing to the continuous 
automorphisms of M, every pure statement without 

free variables has truth value either 0 or 1.

                        Gδ = M = Fσ  measurable 

   □p=p      G open         F closed       ◊p=p

                    G∩F = C clopen          □p=◊p=p

                                Q rational     not Boolean
       

     G = Bσ          B basic     countable Boolean from
intervals with rational ends



Extension vs. Intension
∃y [x = y ∧ Φ(y)] vs. □Φ(x)

    σ = τ  ∧ Φ(σ) → Φ(τ)
                  vs.  

□[σ = τ ] ∧ Φ(σ) → Φ(τ)

Different principles hold in different contexts:

The prime example of an intensional mapping:

  □《Φ ↔ Ψ》≤《□Φ ↔ □Ψ》 



What is an L-Set?
Definition.  An L-set is a set A equipped with an 
L-valued equality《x = y》, where for all x,y,z ∈ A

(i) 《x = x》= 1 ;

(ii) 《x = y》=《y = x》;  and
  (iii) 《x = y》 ∧ 《y = z》≤《x = z》.

Note: There is a useful notion of complete L-set 
and a process of completion.

Note: Mappings between L-sets can be either
extensional or intensional.



Boolean-valued Reals
Theorem.  The set ℝL = {α | α : Op(ℝ) →frm L} can be
made into a complete L-set by defining;
                  《α = β》= ∧U∈Op(ℝ)(α(U) ↔ β(U)).

Theorem.  The frame Op(ℝxℝ) is the frame-coproduct 

of Op(ℝ) with itself.

then for α,β :  Op(ℝ) →frm L we have (α,β) :  Op(ℝxℝ) →frm L, 
and so we can define (α+β) = (α,β)◦(+) :  Op(ℝ) →frm L. 

Theorem. Using +   :  ℝxℝ→ℝ and (+)   :  Op(ℝ) →frm Op(ℝxℝ),

Note: Other continuous functions can be handled in the same 
way.  Many laws of algebra then follow automatically.



Random Variables as Reals
Theorem.  For the cLa M we can identify

where the f : [0, 1] → ℝ are measurable functions and

(f) means inverse image; moreover, we can set:

      《(f)/Null = (g)/Null》= { t ∈ ℝ | f(t) = g(t)}/Null.

In this representation we find:

ℝM = {   (f)/Null   | (f) :  Op(ℝ) →σ-frm Borel([0, 1]) }

(f)/Null + (g)/Null = (f + g)/Null.

Note:  We can similarly treat other measurable operations 
on the M-valued reals.



Intensional Powersets
Definition:  Given a complete L-set A the intensional 
powerset of A is the  collection of P: A→L where, for 

Note: A Principle of Comprehension follows.

all x,y ∈ A,  we have P(x) ∧ □《x = y》≤ P(y).
And we use the definition

《P = Q》 =  ∧
x∈A

(P(x) ↔ Q(x))

Theorem:  The intensional powerset of A is a complete L-set.

Question: Should we be able to iterate this 
notion of powerset?



A Modal Boolean-Valued Universe
V(L) = { v : dom v → L | dom v ⊆ V(L)  &  

《u ∈ v》= ∨{ v(y) ∧ □《u = y》| y ∈ dom v}
《u = v》= ∧{ u(x) →《x ∈ v》| x ∈ dom u } ∧

The new insight:

intensional 
              

extensional

u ∈ v


∧{ v(y) →《y ∈ u》| y ∈ dom v }

∀x,y ∈ dom v [ v(x) ∧ □《x = y》≤ v(y) ] }



What is MZF?

□[u = v ] ∧ Φ(u) → Φ(v)

∀ u,v [ u = v ↔ ∀ x [x ∈ u ↔ x ∈ v]]

∀ u ∃ v ∀ x [x ∈ v ↔ x ∈ u ∧ Φ(x)]

∀ x,y [□[x = y ] ↔ ∀ u [x ∈ u → y ∈ u]]

∀ u ∃ v ∀ x [x ∈ v ↔ □[x = u ]]

{∅} = {∅ | Φ } ↔ Φ
 □ Φ ↔ ∀ u [{∅} ∈ u → {∅ | Φ } ∈ u]

Extensionality & Comprehension

Substitution    (A number of previous lemmata are needed.)

Singleton

Leibnitz’ Law

Definable Modality



Two Membership Relations?
u € v ↔ ∃ y [y ∈ v ∧ u = y]

∀ u ∃ v ∀ x [x € v ↔ x € u ∧ ∃ y [ Φ(y) ∧ x = y]]

∀ u ∃ v ∀ x [x € v ↔ x = u ]

Extensional Comprehension

Extensional Singleton

Intensional Powerset

Extensional Membership

Extensional Powerset
∀ v ∃ w ∀ u [u ∈ w ↔ □[u ⊆ v ]]

∀ v ∃ w ∀ u [u € w ↔ u ⊆ v ]

∀ x,y [ x = y  ↔ ∀ u [x € u → y € u]]
Extensional Leibnitz’ Law



A Refutation
Theorem. In V(M) the following has truth value 0:

 ∀ u,v [ u = v ↔ ∀ x [x € u ↔ x € v]].

Proof: Find p ∈ M with 0 < p < 1 and □p = 0. (How?)
Let  a = {∅} and b = { ∅ | p }, and u = { a | p } and v = { b | p }.
We have《a = b》= p, and《a ∈ u》= p and《a ∈ v》= 0.
It follows that《u = v》= ¬p.   We also calculate that

《x € u》=《x = a》∧ p and《x € v》=《x = b》∧ p.

But then《x € v》=《x = a》∧ p as well.  From this we get:

《u = v ↔ ∀ x [x € u ↔ x € v]》=《u = v》 = ¬p.
The conclusion of the theorem then follows 

by the 0-1 Law for M.



Using Russell’s Paradox
Theorem. For each stage Vα(M) of the universe it is possible  
 to find an element a of the model such that

Proof: Apply the Extensional Comprehension Principle 

《 x € a 》=《 x € Vα 》∧《¬ x € x 》,
where Vα is the constant function 1 on Vα(M).  

Putting a for x, we have《 a € Vα 》= 0.  The desired 

conclusion then follows.

to have an element a where for all x in the model:

《 a = y 》= 0 for all y in Vα(M).



Another Refutation

∃ v ∀ u [u ∈ v ↔ u = ∅ ].

Note: We can also refute: ∀ v ∃ w ∀ u [u ∈ w ↔ u ⊆ v ].

Theorem.  In V(M) the following has truth value 0:

Proof: Again, find p ∈ M with 0 < p < 1 and □p = 0. 
Suppose we had v in the model where《 u ∈ v 》=《 u = ∅ 》
for all u in the model.  Now v is a function with dom v ⊆ Vα(M) 
for some stage α.  Find an a with《 a = y 》= 0 for all y in Vα(M).
Take u = { a | ¬p } which implies《 u = ∅ 》=  p.  We then have
 p  ≤《 u ∈ Vα 》= ∨{ □《u = w》| w ∈ Vα(M) }. But we find 
□《u = w》= □( ¬p →《a ∈ w》) ∧

□∧{ w(y) →《y ∈ u》| y ∈ dom w } ≤ □p,
But, this is impossible.



Pairs, Products, & Relations

∀ a,b ∃ w ⊆ (a x b) ∀ x ∈ a ∀ y ∈ b [(x, y) ∈ w ↔  Φ(x, y)]

Definitions:  In any V(L) the following are defined:
   (i)        {u} = {(u,1)};
   (ii)   {u, v} = {(u,1),(v,1)};
   (iii)   (u, v) = {{u}, {u, v}}; and 
   (iv)  a x b = {((x, y), a(x) ∧ b(y)) | x ∈ dom a ∧ y ∈ dom b}.

Theorem:  In any V(L) we have:
   (i)     ∀ u,v [{u} = {v} ↔ □u = v];

(ii)     ∀ u,v,s,t [{u, v} = {s, t} ↔ □ [u = s ∧ v = t] ∨ □ [u = t ∧ v = s]];
(iii)     ∀ u,v,s,t [(u, v) = (s, t) ↔ □ [u = s ∧ v = t]]; and
(iv)     ∀ a,b,t [t ∈ (a x b) ↔ ∃ x,y [ x ∈ a ∧ y ∈ b ∧ □ t = (x, y)]].

Relational Comprehension



Random Numbers?
Alex Simpson (Edinburgh) has argued that the 

quotient frame Op([0,1]) →frm Op([0,1])/Null   
(N.B. another pointless space) can be considered as 

satisfactorily modeling random reals.

Note: This space has many M-valued points, and it can be 
taken as a subset of ℝM.  In fact, we can identify

 RandM = {   (f)/Null   | f : [0, 1] →meas [0, 1] & 
                        { t ∈ ℝ | f(t) ∈ N } ∈ Null, for all N ∈ Null }.

Question: Do these random reals have 
interesting modal properties?



Applying Ergodic Theory?
Recall:  In the measure-algebra model of MZF, every 

continuous measure-preserving automorphism of M 
induces an automorphism of the whole universe.
Let Γ be the group of all such automorphisms.

Furstenbergʼs Multiple Recurrence Theorem:  
    

Let τ ∈ Γ, and let《Φ(a)》≠ 0,  

then for all k there exists an n such that
     

《Φ(a) ∧ Φ(τn(a)) ∧ Φ(τ2n(a)) ∧ Φ(τ3n(a)) ∧ ... ∧ Φ(τkn(a))》≠ 0.



The End




