How to determine the value of P

Hans Adler
Leeds

Sofia
August 2009
Motivation

Setting: a big saturated model of a first order theory.

When Shelah started *Classification Theory*, he examined forking. We say that a and b are independent, and write $a \downarrow b$, if the type of a over b does not fork (over \emptyset). In general, \downarrow need not be symmetric.

Shelah: Forking is well behaved in stable theories.

Kim: Forking is well behaved exactly in simple theories.

Onshuus: \fork-forking is well behaved in simple and o-minimal theories.

Since \fork-forking $= \text{forking}$ in simple theories (take this with 65 mg of salt), \fork-forking is ‘better’ than forking. But can we understand it in terms of forking?
Dividing

Shelah: \(\varphi(x, b) \) divides if
for an indiscernible sequence \(b_0, b_1, b_2, \ldots \) with \(b = b_0 \)
the set \(\{ \varphi(x, b_i) \mid i < \omega \} \) is inconsistent.

Kim: \(\varphi(x, b) \) \(k \)-divides if
for an indiscernible sequence \(b_0, b_1, b_2, \ldots \) with \(b = b_0 \)
the set \(\{ \varphi(x, b_i) \mid i < \omega \} \) is \(k \)-inconsistent.

Ben-Yaacov: \(\varphi(x, b) \) \(\psi(y < k) \)-divides if
for an indiscernible sequence \(b_0, b_1, b_2, \ldots \) with \(b = b_0 \)
the formula \(\varphi(x, y_0) \land \cdots \land \varphi(x, y_{k-1}) \land \psi(y_0, \ldots, y_{k-1}) \) is inconsistent.
Ω-dividing

- Ω: a set of formula pairs (φ, ψ), each pair of the form φ = φ(x, y), ψ = ψ(y < k).
- p: a partial type.

We say that p(x) Ω-divides if there are (φ, ψ) ∈ Ω and b such that φ(x, b) ∈ p(x) and φ(x, b) ψ-divides.

- Ω* = all such pairs
 \[\Rightarrow \Omega_*\text{-dividing} = \text{dividing}.\]
- Ωk = all such pairs (φ(x, y), ψ(y < k))
 \[\Rightarrow \Omega_k\text{-dividing} = k\text{-dividing}.\]
- Ωs = all such pairs with φ stable
 \[\Rightarrow \Omega_s\text{-dividing} = \text{‘stable dividing’}.\]
Forking

Forking is defined in terms of dividing:

- p forks \iff every global extension of p divides.
- p k-forks \iff every global extension of p k-divides.
- p stably forks \iff every global extension of p stably divides.
 (Actually stable forking $=$ stable dividing.)
- p Ω-forks \iff every global extension of p Ω-divides.

Dividing has a number of useful properties that hold in arbitrary theories. The step from dividing to forking preserves them. The variants of dividing/forking have most of these properties as well.
β-forking

$\Omega_\beta = \text{set of all pairs } (\varphi, \psi) \text{ of the form}$

- $\varphi = \varphi(x, yz)$
- $\psi = \psi(y_{<k} z_{<k}) = \bigwedge_{i<j<k} (y_i \neq y_j \land z_i = z_j)$.

$A \upmodels B \iff \text{acl } A \cap B \subseteq \text{acl } C \text{ for every } C \subseteq B.$

$\varphi(x, b)$ β-divides if for some set C,

- $\text{tp}(b/C)$ is not algebraic, but
- $\{ \varphi(x, b') \mid b' \models \text{tp}(b/C) \}$ is k-inconsistent.

Remark

- Ω_β-dividing and β-dividing are not the same, but
- Ω_β-forking and β-forking are the same.
(1) Like the definition of \mathfrak{b}-dividing, $\Omega_{\mathfrak{b}}$-dividing may substantially change its meaning when passing from T to T^{eq}. As for \mathfrak{b}-forking, this does not affect $\Omega_{\mathfrak{b}}$-forking in the case of o-minimal theories.

(2) Definitions of a notion of dividing or forking must always be read over an arbitrary set. If that set is omitted in the definition, it is a straightforward exercise to add it.

(3) A notion of forking is well behaved if the associated relation \downarrow is an independence relation. See next page for the axioms of independence relations. Symmetry is not stated because it follows.
(4) Axioms for independence relations:

finite character \(A \downarrow_C B \iff a \downarrow_C b \) for all finite \(a \subseteq A, \ b \subseteq B \).

full transitivity For \(D \subseteq C \subseteq B \): \(A \downarrow_D B \iff A \downarrow_C B \) and \(A \downarrow_D C \).

normality \(A \downarrow_C B \implies AC \downarrow_C B \).

extension \(A \downarrow_C B \subseteq \hat{B} \implies \exists \hat{B}' \equiv_{ABC} \hat{B} : A \downarrow_C \hat{B}' \).

local character \(\forall A, B \ \exists C \subseteq B : A \downarrow_C B \) and \(|C| \leq \kappa(|A|) \).

(5) A notion of dividing should satisfy the first three axioms. For \(\Omega \)-dividing, normality and a detail in full transitivity may fail.

(6) If a notion of dividing satisfies the first four axioms, then the corresponding notion of forking satisfies the first five axioms.
If we don’t mind redefining \mathfrak{b}-dividing, we can always read \mathfrak{b} as $\Omega_{\mathfrak{b}}$, i.e. the set of all pairs (φ, ψ) of the form

$\triangleright \varphi = \varphi(x, yz) \\
\triangleright \psi = \psi(y < k z < k) = \bigwedge_{i < j < k} (y_i \neq y_j \land z_i = z_j)$.

Local forking in the sense of restricting the formulas that may divide, and how they may do so, can be treated in the same general framework as forking, \mathfrak{b}-forking and stable forking, which are indeed just special cases.