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Introduction

* Region-based theory of space
— Spatial entities
e Regions
— Spatial relations
e Part-of

e Contact (connection)
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Introduction

* Adjacency spaces
- (W,R)
— Spatial entities
e Regions: sets of cells

— Spatial relations

e Part-of: inclusion
e Contact: a and b are in contact iff for some x&EW and yeW we have x&a,

xRy and yEb
R
e
a b



Introduction

* Modal logics for region-based theories of space

— Boolean variables: py, p,, ---
— Boolean operations: 0, *, U

— Boolean terms
(aUD)

— Modal connectives: < (part-of), C (contact)

e a:=0]a

— Propositional connectives: L, =, v

— Modal formulas
e ¢ ::=(asb)|(aCb)|L|=¢|(pvy)



Introduction

e Qutline
— Syntax and relational semantics
— Modal definability and undefinability
— Axiomatizations and completeness
— Filtration and small canonical models
— Logics related to the colourability of graphs
— Logics related to RCC
— Extensions with rules of inference
— Some complexity results
— Topological models
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Syntax and relational semantics

e Syntax
— Language

e Boolean variables: py, p,, ---

Boolean operations: 0, *, U

Modal connectives: < (part-of), C (contact)

Propositional connectives: L, =, v

— Boolean terms a
e a::=0]|a*|(aUb)
— Modal formulas @
e ¢ ::= (asb)|(aCb)|L|=¢|(pvy) °. R




Syntax and relational semantics

e Syntax
— Language

e Boolean variables: py, p,, ---

Boolean operations: 0, *, U

Propositional connectives: L, =, v
— Boolean terms

e a:=0 (aUb)
— Modal formulas

* ¢ = (asb)|(aCb)|L|-=|(pvp)

a*

Modal connectives: < (part-of), C (contact)
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Syntax and relational semantics

e Syntax
— Language

e Boolean variables: py, p,, ---

Boolean operations: 0, *, U

Propositional connectives: L, =, v

— Boolean terms

(aUb)

— Modal formulas
e ¢ ::= (asb)|(aCb)|L|=¢|(pvy)

e a::=0[a*

Modal connectives: < (part-of), C (contact)
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Syntax and relational semantics

e Syntax
— Language

e Boolean variables: py, p,, ---

Boolean operations: 0, *, U

Modal connectives: < (part-of), C (contact)

Propositional connectives: L, =, v (a<b)

— Boolean terms
(aUD)

— Modal formulas
¢ ¢ = (ab)|(aCb)|L|-=d|(dpvp)

e a::=0[a*




Syntax and relational semantics

e Syntax
— Language

e Boolean variables: py, p,, ---

Boolean operations: 0, *, U

Modal connectives: < (part-of), C (contact)

Propositional connectives: L, =, v (aCb)

— Boolean terms
(aUD)

— Modal formulas
* ¢ = (a<b)|(aCb)|L|-¢|(pvp)

e a::=0[a*




Syntax and relational semantics

e Syntax

— Abbreviations
e (a=b) ::= (asb)a(b=a)
e (a=b) ::= =(a=b)
e (aOb) ::= (aNb=0) (overlap)
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e (a<<b) ::= =(aCb*) (non-tangential inclusion)

— Substitution

¢ aPpyeesPy) /(150 sy) (1o D)/ Do)

* QPXpee X))/ QG- 50,)



Syntax and relational semantics

e Syntax

— Abbreviations
e (a=b) ::= (asb)a(b=a)
e (a=b) ::= =(a=b)
e (aOb) ::= (aNb=0) (overlap)
e (a<<b) ::= =(aCb*) (non-tangential inclusion)

— Substitution

¢ aPpyeesPy) /(150 sy) (1o D)/ Do)
SRR V2 I



Syntax and relational semantics

e RCC-8 relations

olo

DC(a,b) EC(a,b) PO(a,b) TPP(a,b)

TPP-!(a,b) NTPP(a,b) NTPP-!(a,b) EQ(a,b)



Syntax and relational semantics

e RCC-8 relations
— Disconnected: DC(a,b) ::= = (aCb)
— External contact: EC(a,b) ::= (aCb)A-(aODb)
— Partial overlap: PO(a,b) ::= (aOb)A—(asb)A —(b=a)
— Tangential proper part: TPP(a,b) ::= (a<b)A—-(a<<b)a—(b=a)
— Tangential proper part~': TPP-!(a,b) ::= (b=a)a-(b<<a)a-(a<b)
— Nontangential proper part: NTPP(a,b) ::= (a<<b)a(a=b)
— Nontangential proper part~': NTPP-!(a,b) ::= (b<<a)a(b=a)
— Equal: EQ(a,b) ::= (a=b)



Syntax and relational semantics

e Relational semantics

— Frame (adjacency space)
e Relational system F = (W,R)

— W: nonempty set (cells)
— R: binary relation on W (adjacency relation)




Syntax and relational semantics

e Relational semantics

— Frame (adjacency space)
e Relational system F = (W,R)

— W: nonempty set (cells)

— R: binary relation on W (adjacency relation)

— If aCW then [R]a ::= {xEW: VyEW(xRy—y&a)} is the set of all cells that are
necessarily R-adjacent to a-cells

g




Syntax and relational semantics

e Relational semantics

— Frame (adjacency space)
e Relational system F = (W,R)

— W: nonempty set (cells)

— R: binary relation on W (adjacency relation)

— If bCW then (R)b ::= {x&€W: IyEW(xRyAyEDb)} is the set of all cells that are
possibly R-adjacent to b-cells

b (R)b




Syntax and relational semantics

e Relational semantics
— Regions in an adjacency space F = (W,R)
e Arbitrary subsets of W

— Non-tangential inclusion between two subsets a, b
e a<<yb iff for all x&W and yEW, if x&a and xRy then y&b
e a<<gbiff aC[R]b

b [R]b

a‘ a‘




Syntax and relational semantics

e Relational semantics
— Regions in an adjacency space F = (W,R)
e Arbitrary subsets of W

— Contact between two subsets a, b
e aCyb iff for some x&W and yeW we have x&a, xRy and y&b
o aCyb iff aN(R)b=

(R)b




Syntax and relational semantics

e Relational semantics (definition)

— Valuations in an adjacency space F = (W,R)
e Functions v assigning to each Boolean variable p a subset v(p) of W
* ¥(0) ==, v(p) == v(p), v(a) ::= W-v(a), v(aUb) ::= v(a)Uy(b)
— Models over an adjacency space F = (W,R)
e M=(W,R,v)
— Truth of modal formulas in a model M = (W,R,v)
¢ M |=(asb) iff v(a)Cv(b), M |= (aCb) iff v(a)Crv(b)
e NotM |=J_,M |= = ¢ iff not M |=¢,M |=q)v1piffM |=q)0rM |=1p



Syntax and relational semantics

* Relational semantics (example)
— Let ¢ be the following modal formula
* (p=0)A(q=0)A(r=1)A((pUq)=r)A(p=r)A(g=r)A=(pCr)a=(qCr)
— ¢ 1s true 1n the following model
\
v(r) \\
iy

— ¢ 1s false 1n all connected models



Syntax and relational semantics

 Modal logics of classes of frames

— Logic of a class X of frames

e Set L(X) of all modal formulas true in =
— Lemma: If 3,CZ, then L(Z,)CL(Z,).
— Logic of the class 2, of all frames

* La



Syntax and relational semantics

 Modal logics of classes of frames

— Lemma: The following modal formulas are true in the class 2,
of all frames:
e (aCb)—(a=0),
e (aCb)—(b=0),
* ((a,Ua,)Cb)<>(a,Cb)v(a,Ch),
e (aC(b,Ub,))<>(aCb,)v(aCb,).
— Lemma: The following modal formulas are true in the class
2o Of all weakly serial frames:
e (a=0)<>(aC1)v(1Ca),
e (asb)<>=((aNb*)C1)a=(1C(anb*)).



Syntax and relational semantics

* A translation into modal logic K with universal modality

— T: our language = the modal logic K
* up)=p
e 7(0) ::= 1, T(a*) ::= =7(a), t(aUb) ::= t(a)vt(b)
e t(asb) ::= [U](t(a)—t(b)), T(aCb) ::= (U)(t(a)A(R)t(b))
* (L) =L, t(=¢) = ~t(¢), Wpvp) :=t(Pp)vT(y)

— Lemma: F |= ¢ (in the sense of our language) iff F | =t(¢) (in

the sense of the modal logic K)).



Modal definability and undefinability



Modal definability and undefinability

* Modal definability

— The class 2 of frames 1s modally definable by the modal formula
¢ iff for every frame F = (W,R), FEZ iff F| = ¢

—  The first-order sentence ¢ (in R and =) 1s modally definable by
the modal formula ¢ iff for every frame F = (W,R), F| = @ iff
Fl=¢

— Theorem: The following decision problem is undecidable:

 Given a first-order sentence @ (in R and =), determine if there exists a
modal formula ¢ such that @ is modally definable by ¢.



Modal definability and undefinability

-
e Modal definability “e
« —
— Lemma (first-order examples):
1. Non-emptiness of R: (1C1). \_
2. Right seriality of R: (p=0)—(pC1).
3. Left-seriality of R: (p=0)—(1Cp).
4. Weak seriality of R: (p=0)—(pC1)v(1Cp).
5. Reflexivity of R: (Ref) ::= (p=0)—(pCp).
6. Symmetry of R: (Sym) ::= (pCq)—(qCp).
7. Universality of R: (p=0)A(q=0)—(pCq).



Modal definability and undefinability

4 )
e Modal definability //v/'v o
: v
— Lemma (first-order examples): //"
1. Non-emptiness of R: (1C1). \_ J
2. Right seriality of R: (p=0)—(pC1).
3. Left-seriality of R: (p=0)—(1Cp).
4. Weak seriality of R: (p=0)—(pC1)v(1Cp).
5. Reflexivity of R: (Ref) ::= (p=0)—(pCp).
6. Symmetry of R: (Sym) ::= (pCq)—(qCp).
7. Universality of R: (p=0)A(q=0)—(pCq).



Modal definability and undefinability

4 )
+ Modal definability o
: «
— Lemma (first-order examples): ‘f/
1. Non-emptiness of R: (1C1). \_ J
2. Right seriality of R: (p=0)—(pC1).
3. Left-seriality of R: (p=0)—(1Cp).
4. Weak seriality of R: (p=0)—(pC1)v(1Cp).
5. Reflexivity of R: (Ref) ::= (p=0)—(pCp).
6. Symmetry of R: (Sym) ::= (pCq)—(qCp).
7. Universality of R: (p=0)A(q=0)—(pCq).



Modal definability and undefinability

4 )
e Modal definability /‘V?v P
: "y
— Lemma (first-order examples): /‘V/
1. Non-emptiness of R: (1C1). \_ J
2. Right seriality of R: (p=0)—(pC1).
3. Left-seriality of R: (p=0)—(1Cp).
4. Weak seriality of R: (p=0)—(pC1)v(1Cp).
5. Reflexivity of R: (Ref) ::= (p=0)—(pCp).
6. Symmetry of R: (Sym) ::= (pCq)—(qCp).
7. Universality of R: (p=0)A(q=0)—(pCq).



Modal definability and undefinability

* Modal definability
—  Reflexivity of R: modally defined by (Ref) ::= (p=0)—(pCp)

v(p) v(p)

(@) @)



Modal definability and undefinability

e Modal definability
—  Symmetry of R: modally defined by (Sym) ::= (pCq)—(qCp)

v(p) v(p)

v(q) v(q)



Modal definability and undefinability

* Modal definability

— Lemma (second-order examples):

1. Connectedness of R:
(Con) ::= (p=0)A(p*=0)—(pCp*).

2. Non n-colourability of R:
(U 1=isnPi=DAA Isi<jsn (piopj)_> U 1=i=n(PiCPy)-



Modal definability and undefinability

Modal definability
—  Connectedness of R: modally defined by

(Con) ::= (p=0)A(p*=0)—(pCp*)

/ v(p)

v(p*)

~

/ v(p)




Modal definability and undefinability

e Modal definability
— Non n-colourability of R: modally defined by

(U 1=isnPi=1AA |si<j=n (PiOPj)e U 1i=n(PiCD})




Modal definability and undefinability

 Modal undefinability

— Lemma (modal undefinability criterion): If Z,C3,, 3 =%, and
L(Z,)=L(Z,) then X, is not modally definable.

— Bounded morphism from a model M = (W,R,v) to a model M’ =

(W.R',')
e Surjective function f from W to W' such that
— If xRy then f(x)R'f(y) — If x 'R "y " then f~1(x")Crf~1(y")
- f(v(p)) S v'(p) - £1(v(p)) & v(p)
4 o ) 4 o )
X ¢ f(x) ¢
° — . f ° S jﬁy) .
. .




Modal definability and undefinability

 Modal undefinability

— Lemma (modal undefinability criterion): If Z,C3,, 3 =%, and
L(Z,)=L(Z,) then X, is not modally definable.

— Bounded morphism from a model M = (W,R,v) to a model M’ =

(WR'v)
e Surjective function f from W to W' such that
— If xRy then f(x)R'f(y) — Ifx 'R 'y’ then f-1(x")Cf-1(y")
- f(v(p)) S v'(p) - £1(v(p)) & v(p)
4 £1(x) 4 o )

f-1(y’ ° h
(y") ° </ °
D I R NN




Modal definability and undefinability

 Modal undefinability

— Lemma (modal undefinability criterion): If Z,C3,, 3 =%, and
L(Z,)=L(Z,) then X, is not modally definable.

— Bounded morphism from a model M = (W,R,v) to a model M’ =

(W',R",v')
e Surjective function f from W to W' such that
— If xRy then f(x)R'f(y) — If x 'R "y " then f~1(x")Crf~1(y")
— f(v(p)) & v'(p) - F1(v'(p)) & v(p)
4 o ) 4 v(p) o )
° — °
° v(p) ° f(v(p))




Modal definability and undefinability

 Modal undefinability

— Lemma (modal undefinability criterion): If Z,C3,, 3 =%, and
L(Z,)=L(Z,) then X, is not modally definable.

— Bounded morphism from a model M = (W,R,v) to a model M’ =

(W'R"v)
e Surjective function f from W to W' such that
— If xRy then f(x)R'f(y) — If x 'R "y " then f~1(x")Crf~1(y")
—~ f(v(p)) S v'(p) - £1(v'(p)) € v(p)
) . ) 4 . )
° S °
° f~(v'(p) ° v'(p)




Modal definability and undefinability

 Modal undefinability

— Lemma (modal undefinability criterion): If Z,C3,, 3 =%, and
L(Z,)=L(Z,) then X, is not modally definable.

— Bounded morphism from a model M = (W,R,v) to a model M’ =

(W' ,R",v")
e Surjective function f from W to W' such that
— If xRy then f(x)R'f(y) — If x 'R "y " then f~1(x")Crf~1(y")
- f(v(p)) S v'(p) - £1(v(p)) & v(p)

— Lemma (bounded morphism lemma): Let f be a bounded
morphism from the model M = (W,R,v) to the model M’ =
(W,R V)M |=¢iff M |=¢.



Modal definability and undefinability

e Modal undefinability

— Lemma: Let 2, be the class of all reflexive and
symmetric frames and X, be the class of all equivalence

relations.
1. L(zref,sym) = L(Ze)°
2. 2, is not modally definable.
a N a
(Xa{xa}l; ) (Y7{§7Y}) (y,{y,Z t) (Z,{y,Z})
7 Xd P}é
(x[x)) (. 0)) (.42})

. AN




Modal definability and undefinability

e Modal undefinability
— Lemma: Let X, ... e the class of all 2-colourable frames.
L. Lall = L(ZZ-colour)°
2. 2, .oour 1S DOt modally definable.

2 y . ) 4 )
[ J
fX/Y} XZ % Yz ZX
® XyZ ® X7X ® yzX » ZXY ® ZXZ
; ; ; H H °

h h h h
ll\ ll\ [ [ [




Axiomatizations and completeness theorems



Axiomatizations and completeness theorems

e Axiomatizations

— Axiomatic system L_. for the logic L,

e Axioms

— (aCb)—(a=0) — (aCb)—(b=0)

— ((a,Va,)Cb)<>(a,Cb)v(a,Cb) - (aC(b,Ub,))<>(aCb,)v(aCb,)
e Rules of inference

— Modus ponens: from |— ¢ and |— ¢—, infer |—1p

— Extensions of L
e L . +AX where AX 18 an arbitrary set of axiom schemes
e L _..+R where R is an additional rule of inference

— Lemma: There is a continuum of axiomatic extensions of L_. .



Axiomatizations and completeness theorems

e (Canonical models

— Let L be an axiomatic extension of L.
e L-theory
— Set of formulas containing all theorems and closed under modus ponens
e Consistent L-theory
— L-theory not containing L
e Maximal L-theory
— Consistent L-theory containing ¢ or —¢ for each modal formula ¢
— Lemma (Lindenbaum lemma): Any consistent L-theory S can
be extended into a maximal L-theory S'.



Axiomatizations and completeness theorems

Canonical models
— Let L be an axiomatic extension of L . and S be a maximal L-

theory
e asgbiff (a<b)ES — a=¢b iff a<b and b=qa
e S-filter

— Set I' of boolean terms containing 1 and such that
1. If a€l and a<(b then bel’
2. If a€l and bl then anbel’

e Consistent S-filter
—  S-filter not containing 0

e  Maximal S-filter
— Consistent S-filter containing a or a* for each Boolean term a



Axiomatizations and completeness theorems

e (Canonical models

— Let L be an axiomatic extension of L . and S be a maximal L-
theory
e Canonical frame Fq = (W¢,Ry)
— Wy is the set of all maximal S-filters
— FR(G iff for all a€F and bEG we have (aCb)ES
— Lemma (R-extension lemma): Any consistent S-filters F and
G such that FR(G can be extended into maximal S-filters F’
and G’ such that F'R(G’.



Axiomatizations and completeness theorems

e (Canonical models

— Let L be an axiomatic extension of L . and S be a maximal L-
theory
e Canonical frame Fq = (W¢,Ry)

— Wy is the set of all maximal S-filters
— FR(G iff for all a€F and bEG we have (aCb)ES

— Lemma (characterization of C and =):
1. (a<b)ES iff for all FEW(, if acF then bEF.

(aCb)ES iff for some FEW  and GEW( we have a€F, FRG
and beG.



Axiomatizations and completeness theorems

e (Canonical models

— Let L be an axiomatic extension of L . and S be a maximal L-
theory
e Canonical valuation in Fg = (W¢,R¢)
—  v4(p) ::= {FEW: pEF}
e Canonical model over Fg = (W¢,R()
- Mg =(WgRg,vg)
Lemma (truth lemma):
vg(a) ::= {FEW,: acF}.
My | = ¢ iff ¢ES.
— Lemma (canonical model lemma): A modal formula ¢ is a
theorem of L iff ¢ is true in all canonical models of L.

o o=



Axiomatizations and completeness theorems

e Completeness theorems
—  Theorem (completeness theorem for L

[ ]
min) .

1. Weak completeness. A modal formula ¢ is a theorem of L,
iff ¢ is true in all frames.

2. Strong completeness. A set S of modal formulas is consistent
in L_. iff S has a model.



Axiomatizations and completeness theorems

e Completeness theorems
Let L be an axiomatic extension of LL

Proposition (canonical definability lemma):

VS, Non-emptiness of Ri:  (1C1) is in L.

VS, Right seriality of Ri:  (p=0)—(pC1) is in L.

VS, Left-seriality of Ri:  (p=0)—(1Cp) is in L.

VS, Weak seriality of Rg:  (p=0)—(pC1)v(1Cp) is in L.
VS, Reflexivity of Rg: (Ref) ::= (p=0)—(pCp) is in L.
VS, Symmetry of Rg: (Sym) ::= (pCq)—(qCp) is in L.
VS, Universality of R: (p=0)A(gq=0)—(pCq) is in L.

NSV R NN =



Axiomatizations and completeness theorems

e Completeness theorems

— Theorem (strong completeness theorem for some extensions of
L _..): All extensions of L. with axioms from the canonical
definability lemma are strongly complete in the corresponding
classes of frames.

— Theorem (strong completeness of the logic of equivalence
relations): The logic L_. +(Ref)+(Sym) is strongly complete in
the class 2, of all equivalence relations.



Axiomatizations and completeness theorems

e Weak canonicity

— An axiomatic extension L =L _. +Ax of L .
1ff Ax 1s true 1n some canonical frame for LL

1s weakly canonical

— Theorem: Every axiomatic extension of L_. 1is weakly
canonical.



Axiomatizations and completeness theorems

e Strong canonicity

— An axiomatic extension L = L. _. +Ax of L . 1s strongly
canonical i1ff Ax 1s true 1n all canonical frames for L

— Theorem: All axiomatic extensions of L. with axioms from
the canonical definability lemma are strongly canonical.

—  Proposition: The logic L. +(Con) is not strongly canonical.

min



Filtration and small canonical models



Filtration and small canonical models

e Filtration

— Let M = (W,R,v) be a model and BV be a set of Boolean variables

— Define the equivalence relation = in W as follows
o x=y iff for all pEBV, xEv(p) iff yEv(p)
— The filtration of M = (W,R,v) through BV is the model M’ =
(W',R’,v") such that
e W' = W|E
e |x|R’|y| iff for some zEW and tEW we have x=z, zRt and t=y
e For all pEBV, v'(p) = v(p) =
— Remark that Card(W') < 2Card(BV)



Filtration and small canonical models

e Filtration

/ v(p)

—  Lemma (filtration lemma):
1. For every Boolean term a over BV, v(a) == v'(a).
2. For every modal formula ¢ over BV, M |=¢ iff M’ | = ¢.



Filtration and small canonical models

e Small canonical models

— Let L =L_. +AX be an axiomatic extension of L _. , S be a
maximal L-theory, Mg = (W¢,Rq,v¢) be the canonical model
corresponding to S and BV be a finite set of Boolean variables

— Let M{' = (W{',R{’,v¢’) be the filtration of Mg = (W¢,Rg,v¢)
through BV

— The frame F¢' = (W{',R{’) is called small canonical frame for L

— Lemma (small canonical frame lemma): Ax is true in all small
canonical frames for L.



Filtration and small canonical models

* Weak completeness theorems for the extensions of L.

— Theorem: Let L =L _, +Ax be an axiomatic extension of L . ,
2, be the class of all frames determined by Ax and Z,, 5, be
the class of all finite frames determined by Ax. The following
conditions are equivalent:

1. ¢is atheorem of L.
¢ is true in X, .
3. ¢istrueinZ,, .



Logics related to the colourability of graphs



Logics related to the colourability of graphs

* Logics of non colourability

— Let L" be the extension of L_. with the axiom scheme

- (U 1sienP= 1A A Isi<j<n (piopj)% U 1<i<n(PiCP)

— Let L* be LIUL2U...

— Note / \
e L'isL . +(1C1) .
e L2is L, +(pCp)v(p*Cp*)
i Lch2cLoo o—"e

(1C1)




Logics related to the colourability of graphs

* Logics of non colourability

— Let L" be the extension of L_. with the axiom scheme

° (U lsisnpi=1)/\ A l<i<j=n (plopj)% U 1sisn(picpi)

— Let L* be L1UL2U...

— Note / \
e L'isL . +(1C1) .
e L2isL . +(pCp)v(p*Cp*)
i Lch2cLoo o—"e

(pCp)v(p*Cp~) .
\ /




Logics related to the colourability of graphs

Logics of non colourability

Theorem:

L* is weakly complete in the class of all finite structures
possessing a reflexive point.

L> is decidable.
L* is not finitely axiomatizable.

Theorem (strong completeness theorem for L.*): The logic L
is strongly complete in the class of all frames with a reflexive
point.



Logics related to RCC



Logics related to RCC

e Stell’s reformulation of RCC

— Contact algebra: Boolean algebra (B,0,*,U) with a binary relation
C of contact such that

e (RCC1) If aCb then a=0 and b=0

 (RCC2) (a,Ua,)Cb iff a,Cb or a,Cb and aC(b,Ub,) iff aCb, or aCb,
e (RCC3) If a=0 then aCa (the reflexivity axiom)

e (RCC4) If aCb then bCa (the symmetry axiom)

e (CON) If a=0 and a*=0 then aCa* (the connectedness axiom)

e (EXT) If a=1 then there exists b=0 such that —=(aCb)

— Additional axiom
e (NOR) If —=(aCb) then there exists ¢ such that =(aCc) and —(c*Cb)



Logics related to RCC

e Stell’s reformulation of RCC

— Contact algebra: Boolean algebra (B,0,*,U) with a binary relation
C of contact such that

e (RCC1) If aCb then a=0 and b=0

¢ (RCC2) (a,Ua,)Cb iff a,Cb or a,Cb and aC(b,Ub,) iff aCb, or aCb,
e (RCC3) If a=0 then aCa (the reflexivity axiom)

e (RCC4) If aCb then bCa (the symmetry axiom)

e (CON) If a=0 and a*=0 then aCa* (the connectedness axiom)

e (EXT) If a=1 then there exists b=0 such that —=(aCb)

— Additional axiom
e (NOR) If —=(aCb) then there exists ¢ such that =(aCc) and —(c*Cb)
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Logics related to RCC

e Stell’s reformulation of RCC

— Contact algebra: Boolean algebra (B,0,*,U) with a binary relation
C of contact such that

e (EXT) If a=0 then there exists b=0 such that (b<<a)

— Additional axiom
e (NOR) If (a<<b) then there exists ¢ such that (a<<c) and (c<<b)




Logics related to RCC

e Let us consider the following systems related to RCC
— Weak RCC (WRCC): (RCCI1)—~(RCC4)
— Connected weak RCC (WRCCy): WRCC+(CON)
— Extensional weak RCC (WRCCpy1): WRCC+(EXT)
_ RCC: WRCC+(CON)+(EXT)

— Normal extensional weak RCC (WRCCgxr nor):
WRCC+(EXT)+(NOR)

— Normal RCC (RCCyr): RCC+(NOR)



Logics related to RCC
4 N

Axioms and rules of inference
— (Ref):  (p=0)—(pCp)
— (Sym):  (pCq)—(qCp) ;
~ (Con):  (p=0)A(p*=0)—(pCp*) - /
— (Ext): from |— ¢—(p=0)v(aCp) for p a Boolean variable not occurring in
d—(a=1), infer |— ¢p—(a=1)
o (EXT) If a=1 then there exists b=0 such that =(aCb)
o If pa(a=1) is consistent then pA(p=0)A—(aCp) is consistent

— (Nor): from |— ¢—(aCp)v(p*Cb) for p a Boolean variable not occurring in
¢»—(aCb), infer |— ¢p—(aCb)
¢ (NOR) If —=(aCb) then there exists ¢ such that =(aCc) and —(c*Cb)
e If pa—(aCb) is consistent then A —(aCp)A—(p*Cb) is consistent




Logics related to RCC
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P
Axioms and rules of inference
- (Ref):  (p=0)—(pCp)
- (Sym):  (pCq)—(qCp) ;
— (Con):  (p=0)A(p*=0)—(pCp*) N )

— (Ext): from |— ¢—(p=0)v(aCp) for p a Boolean variable not occurring in
d—(a=1), infer |— ¢p—(a=1)
e (EXT) If a=1 then there exists b=0 such that —(aCb)
e If pa(a=1) is consistent then ¢pA(p=0)A—(aCp) is consistent
— (Nor): from |— ¢—(aCp)v(p*Cb) for p a Boolean variable not occurring in
¢»—(aCb), infer |— ¢p—(aCb)
e (NOR) If =(aCb) then there exists ¢ such that =(aCc) and —=(c*Cb)
e If A= (aCb) is consistent then A —(aCp)A—(p*Cb) is consistent




Logics related to RCC

PWRCC

— Extension of L . with the axiom schemes (Ref) and (Sym)

— Extension of PWRCC with the rule of inference (Ext)

PWRCCpop
— Extension of PWRCC with the rule of inference (Nor)

PVVRCCEXT,NOR
— Extension of PWRCC with the rules of inference (Ext) and (Nor)



Logics related to RCC

PWRCCon

— Extension of L . with the axiom schemes (Ret), (Sym) and (Con)

PWRCCcon ext
— Extension of PWRCC 4y with the rule of inference (Ext)

PVVI{CCCON,NOR
— Extension of PWRCC 4y With the rule of inference (Nor)

PVVI{CCCON,EXT,NOR

— Extension of PWRCC 4y with the rules of inference (Ext) and
(Nor)



Logics related to RCC

e Admissibility of the rules (Ext) and (Nor)

— Lemma: (Ext) is an admissibile rule both in PWRCC and also
in PWRCCon

— Lemma: (Nor) is an admissibile rule both in PWRCC and also
in PWRCCgn




Extensions with rules of inference



Extensions with rules of inference

e The logic PWRCCyr

— Extension of L . with the axiom schemes (Ref) and (Sym) and the
rule of inference (Nor)

e (Nor): from |— ¢—(aCp)v(p*Cb) for p a Boolean variable not occurring in
¢—(aCb), infer |— ¢—(aCb)
* The logic PWRCCyro

— Extension of L . with the axiom schemes (Ref) and (Sym) and the
rule of inference (Nor,)

¢ (Nor,): from |— ¢—(aCp)v(p*Cb) for all Boolean variables p, infer |—
¢—(aCb)



Extensions with rules of inference

e Some remarks on the effects of (Nor) and (Nor,))

— Lemma (soundness of PWRCCy g In the class of all
equivalence relations): All theorems of PWRCCy g, are true
in the class 2, of all equivalence relations.

— Lemma: There exists a set S of modal formulas such that
S has a model in the class >

ref,sym?

S has a model in the class 2,
S is consistent in PWRCCy g,
S is not consistent in PWRCCygre-

ol A



Extensions with rules of inference

e Some remarks on the effects of (Nor) and (Nor,)

— Theorem (weak completeness of PWRCCy . in the class of
all equivalence relations): A modal formula ¢ is a theorem of
PWRCCyoro iff ¢ is true in the class X..

— Corollary: The logics PWRCCygr. and L
have the same theorems.

— Proposition: If S is a set of modal formulas consistent in
PWRCCyor then S has a model in ..

—  Proposition: The notion of consistency of PWRCCygro IS nOt
compact.

+(Ref)+(Sym)

min



Extensions with rules of inference

e Some remarks on the effects of (Nor) and (Nor,)

— Lemma: The logics PWRCCyggr. and PWRCCy i have
equal sets of theorems.

— Corollary (weak completeness theorem for PWRCCyygr):
PWRCCyr Is complete in the class 2 of all equivalence
relations.

— Theorem (strong completeness theorem for PWRCCyr): A
set S of modal formulas is consistent in PWRCCy g If S has
a model in 2.



Extensions with rules of inference

e The logic of 2-chromatic graphs

— A frame F = (W,R) is called 2-chromatic if it is not 1-colourable,
but is 2-colourable

o L2—chr0matic
e Extension of L_. with the axiom (1C1) and the rule of inference (Col,)
— (Col,): from |— =(pCp)a—(p*Cp*)—¢ for p a Boolean variable not occurring
in ¢, infer |— ¢

— If = ¢ is consistent then —(pCp)A—(p*Cp*)A—¢ is consistent

min




Extensions with rules of inference

e The logic of 2-chromatic graphs

— A frame F = (W,R) is called 2-chromatic if it is not 1-colourable,
but is 2-colourable

o L2—chr0matic
e Extension of L_. with the axiom (1C1) and the rule of inference (Col,)

— (Col,): from |— =(pCp)a—(p*Cp*)—¢ for p a Boolean variable not occurring
in ¢, infer |— ¢
— If = ¢ is consistent then —(pCp)A—(p*Cp*)A—¢ is consistent
— Lemma: All canonical frames for L, ...t are 2-chromatic.

— Theorem: The logic L, _; ..masic 1S Weakly and strongly complete
in the class of all 2-chromatic frames.

— Corollary: The logics L and L
theorems.

min

3-chromatic _. +(1C1) have the same



Some complexity results
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Some complexity results

Theorem:

Satisfiability in 2, is NP-complete.
Satisfiability in
Satisfiability in the class of all connected frames is
PSPACE-complete.

Satisfiability in the class of all reflexive, symmetric and
connected frames is PSPACE-complete.

is NP-complete.

ref,sym



Some complexity results

Theorem: Let ¢ be a modal formula.

Satisfiability in the class X, of all frames F = (W,R)
such that F | = ¢ is in 2EXPTIME.

If the membership problem in the class %, is in NP
then satisfiability in the class 2, is in NEXPTIME.



Topological models



Topological models

e Some topological notions

— Let X be a topological space
e x&Cl(a) iff for all closed sets b of X, if aCb then x&b
e xE&Int(a) iff there exists an open set b of X such that bCa and x&b

— A subset a of X is regular closed iff Cl(Int(a)) = a
— A subset a of X is regular open iff Int(Cl(a)) = a

o )



Topological models

e Some topological notions

— Let X be a topological space
e x&Cl(a) iff for all closed sets b of X, if aCb then x&b
e xE&Int(a) iff there exists an open set b of X such that bCa and x&b

— A subset a of X is regular closed iff Cl(Int(a)) = a
— A subset a of X is regular open iff Int(Cl(a)) = a
— The algebra (RC(X),0,1,*,U,N,C)

e RC(X) is the set of all regular closed sets of X

e 0=0,1=X, a*=Cl(X-a), alb = aUb, a/b = Cl(Int(aNb))
e aCbiff aNb = I




Topological models

e Some topological notions

— Let X be a topological space
e x&Cl(a) iff for all closed sets b of X, if aCb then x&b
e xE&Int(a) iff there exists an open set b of X such that bCa and x&b

— A subset a of X is regular closed iff Cl(Int(a)) = a
— A subset a of X is regular open iff Int(Cl(a)) = a

— The algebra (RO(X),0,1,%,U,N,C) P
e RO(X) is the set of all regular open sets of X :’/ a b b )
* 0=0,1=X, a" = Int(X-a), alb = Int(Cl(aUb)), aﬂb—aﬂb ----------
e aCb iff Cl(a)NCIl(b) = & v --------

_____________



Topological models

 Some topological notions
— Let X be a topological space

X s connected iff X cannot be represented by a sum of two disjoint
nonempty open sets of X

e X s semiregular iff X has a closed base of regular closed sets

e X is weakly regular iff X is semiregular and for all open sets a of X, there
exists an open set b of X such that Cl(a)Cb

 Xis k-normal iff every two disjoint regular closed sets of X can be
separated by two disjoint open sets of X
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Topological models

 Some topological notions
— Let X be a topological space

 Xs connected iff X cannot be represented by a sum of two disjoint
nonempty open sets of X

e X s semiregular iff X has a closed base of regular closed sets

e X is weakly regular iff X is semiregular and for all open sets a of X, there
exists an open set b of X such that Cl(a)Cb

 Xis k-normal iff every two disjoint regular closed sets of X can be
separated by two disjoint open sets of X




Topological models

* Some topological notions
— Let X be a topological space

—  Lemma:

1. X s connected iff RC(X) satisfies the axiom (CON)
e (CON) If a=0 and a*=0 then aCa*

2. If X is semiregular than X is weakly regular iff RC(X)
satisfies the axiom (EXT)
e (EXT) If a=1 then there exists b=0 such that —=(aCb)

3. Xis k-normal iff RC(X) satisfies the axiom (NOR)
e (NOR) If =(aCb) then there exists ¢ such that =(aCc) and —(c*Cb)



Topological models

* Topological semantics (definition)

— Valuations 1n a topological space X

e Functions v assigning to each Boolean variable p a regular closed set v(p) of
X

* v(0) =9, ¥(p) ::=v(p), ¥( a*) 1= Cl(X-v(a)), v(aUb) ::= Cl(Int(v(a)Uy(b)))
— Models over a topological space X

e M= (X,v)
— Truth of modal formulas in a model M = (X,v)

¢ M |=(asb) iff v(a)Cv(b), M |= (aCb) iff v(a)Ny(b) = &

e NotM |=J_,M |= = ¢ iff not M |=¢,M |=q)v1piffM |=q)0rM |=1p



Topological models

* Topological semantics (example)
— Let ¢ be the following modal formula
* (p=0)A(q=0)A(r=1)A((pUq)=r)A(p=r)A(q=r)A = (pCr)A=(qCr”)
— ¢ 1s true 1n the following model

4 ) e )
v(g) .
N /

— ¢ 1s false 1n all connected models



Topological models

e Modal logics of classes of topological spaces

— Logic of a class O of topological spaces
e Set L(®) of all modal formulas true in ®

— Lemma: If ©,C0, then L(0,)CL(0,).
— 0O, class of all topological spaces
- 0, class of all connected topological spaces

— Lemma (soundness of PWRCC and PWRCC 4y With respect
to topological semantics):

1. All theorems of PWRCC are true in the class © .
2. All theorems of PWRCC,y are true in the class ©_,,.



Topological models

Canonical topological models

Let L be an axiomatic extension of PWRCC and S be a maximal
L-theory
e S-clan

— Set I of boolean terms containing 1 and such that

1. If a€l and a<(b then bel’

2. If aUbES then a&€I” or beEl

3. If a&I and b&I then (aCb)&ES

e  Maximal S-clan

—  S-clan maximal with respect to set-inclusion



Topological models

 Canonical topological models

— Let L be an axiomatic extension of PWRCC, S be a maximal L-
theory and Xg be the set of all S-clans

— Lemma (clan’s characterization of C and =):
1. (a<b)ES iff for all I'EX, if a€T then beT.
(aCb)ES iff for some I'EX we have acI" and beT..
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Topological models

Canonical topological models

Let L. be an axiomatic extension of PWRCC, S be a maximal L-
theory and Xg be the set of all S-clans

* Define a topology in X taking the following subsets (for each Boolean
terms a) as a basis for the closed sets

— {I'EXq:acl'}
e  Canonical topological model Mg = (X, V)
—  v4(p) = {I'EX{: pET'}
Lemma (truth lemma for the topological semantics):
ve(a) = {I'EX,: acT'}.
Mg | = ¢ iff pES.



Topological models

 Canonical topological models

— Lemma (topological canonicity of connectedness): The
following conditions are equivalent:

1. The axiom (Con) is a theorem of L.
2. All canonical topological spaces of L are connected.



Topological models

 Canonical topological models

— Lemma (topological canonicity of extensionality): If L
contains the rule (Ext) then all canonical topological spaces
of L are extensional.

— Lemma (topological canonicity of normality): If L. contains
the rule (Nor) then all canonical topological spaces of L are
K-normal.



Topological models

 Completeness theorems with respect to topological

—  We associate to each logic related to RCC a class of topological spaces

semantics
e« PWRCC
e  PWRCCpyr
e  PWRCCyop
*  PWRCCgxrnor
e  PWRCC,oy

*  PWRCCeonEgxt
*  PWRCCcoynor

* PWRCCconExTNOR
spaces

All topological spaces

All weakly regular topological spaces

All k-normal topological spaces

All k-normal weakly regular topological spaces
All connected topological spaces

All weakly regular connected topological spaces
All k-normal connected topological spaces

All k-normal weakly regular connected topological



Topological models

 Completeness theorems with respect to topological
semantics

— Theorem: The following are equivalent for all modal
formulas ¢:
e ¢is atheorem of L.
e ¢is true in all L-spaces.
 ¢istruein all compact T, semiregular L-spaces.

—  Theorem: The following are equivalent for all sets S of modal
formulas:
e Sis consistent in L.
e S has a model in some L-space.
S has a model in some compact T, semiregular L-space.



Conclusion



Conclusion

e Concluding remarks

— New kinds of modal logics

e Discrete models of spatial regions

e Topological models of spatial regions
— Two kinds of semantics

e Relational Kripke-style
e Topological



Conclusion

e Concluding remarks

— Relational semantics
e General definability
e Sahlqvist’s like theory

— Topological semantics
e Definability theory

e Filtration

e Canonicity



Conclusion

e Future work
— Variants of part-of and contact in model M = (W,R,v)

e Part-of: M | = (asb) iff v(a)S(R)v(b) weak part-of
v(a)Cy(b) part-of
v(a)Z[R]v(b) non-tangential inclusion
e Contact: M | = (aCb) iff v(a)(R)v(b)=J weak overlap
v(a)Nv(b)=D overlap

v(a)N[R]v(b)=J strong overlap



Conclusion

e Future work

— Weaken the Boolean base
e Drop the Boolean complement
e Replace the Boolean axioms with axioms for distributive lattices

— Introduction of n-ary adjacency relations

e Relational semantics
— C(a,,...,a ) iff for some x,EW, ..., x EW we have x,Ev(a,), ..., x Ev(a_) and
R(X,,....X,)
e Topological semantics
- C(a,,...,a) iff v(a;)N...Nv(a, ) = &



Selected references

Cohn, A., Hazarika, S. Qualitative spatial representation and reasoning. Fundamenta
Informatica (2001).

Dimov, G., Vakarelov, D. Contact algebras and region-based theory of space: a proximity
approach — I. Fundamenta Informaticae (2006).

Diintsch, 1., Winter, M. A representation theorem for Boolean contact algebras. Theoretical
Computer Science (2005).

Galton, A. The mereotopology of discrete spaces. COSIT 1999.

Lutz, C., Wolter, F. Modal logics of topological relations. Logical Methods in Computer
Science (20006).

Randell, D., Cui, Z., Cohn, A. A spatial logic based on regions and connection. KR 1992.

Stell, J. Boolean contact algebras: a new approach to the region connection calculus.
Atrtificial Intelligence (2000).

Wolter, F., Zakharyaschev, M. Spatial representation and reasoning in RCC-8 with
Boolean region terms. ECAI 2000.



