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Ultrapowers

Definition
An ultrafilter is a nonprincipal ultrafilter on N.

On AN define ∼U by

~x ∼U ~y iff (Un)x(n) = y(n)

AN/ ∼U is the ultrapower of A.
Applications in logic, nonstandard analysis, number theory,

combinatorics, geometry of Banach spaces,. . .

Theorem
Assume the Continuum Hypothesis, CH. If A is a structure of
cardinality ≤ 2ℵ0 then all ultrapowers of A are isomorphic.
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Prologue: Stability

Theorem (Dow, Shelah, 1984)

IF CH fails and A is an infinite linear ordering then A has
nonisomorphic ultrapowers.

Theorem ()

Assume CH fails. For a countable model A the following are
equivalent.

1. All ultrapowers of A are isomorphic.

2. The theory of A is stable.
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Prologue: Stability

Theorem (Dow, Shelah, 1984)

IF CH fails and the theory of A is unstable then A has
nonisomorphic ultrapowers.

Theorem (I. Farah–B. Hart, 2009)

Assume CH fails. For a countable model A the following are
equivalent.

1. All ultrapowers of A are isomorphic.

2. The theory of A is stable.



Hilbert space and operator algebras

H: a complex Hilbert space

(B(H)

,+, ·,∗ , ‖ · ‖

): the algebra of bounded linear operators on H

A C*-algebra is a subalgebra of B(H) closed in the norm
topology.

Examples: (i) C ([0, 1]).
(ii) Mn(C).

A von Neumann algebra is subalgebra of B(H) closed in the
weak operator topology.

It is tracial if there is τ : M → C such that τ(ab) = τ(ba), it is
continuous, and faithful: τ(a∗a) = 0 if and only if a = 0.
Examples: (i) L∞([0, 1], λ), τ(f ) =

∫
f dλ.

(ii) Mn(C), τ(a) = 1
n trace(a).
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Ultrapowers of C*-algebras

and II1 factors

`∞(M) = {~a ∈ MN : sup
n
‖an‖ <∞}.

cU (M) = {a ∈ `∞(M) : lim
n→U
‖an‖ = 0}

The ultrapower
MU = `∞(M)/cU (M)

is a C*-algebra.

Applications in classification of purely infinite C*-algebras
(Kirchberg–Phillips), classification of II1 factors (McDuff, Connes).
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Relative commutant

M ↪→ MU via the diagonal embedding a 7→ (a, a, a, . . . )/U .

The relative commutant:

FU (M) = {a ∈ MU : ab = ba for all b ∈ M}.

(also denoted by M ′ ∩MU ).

Question (Kirchberg, 2002)

Is FU (B(H)) = C · 1?



Relative commutant

M ↪→ MU via the diagonal embedding a 7→ (a, a, a, . . . )/U .
The relative commutant:

FU (M) = {a ∈ MU : ab = ba for all b ∈ M}.

(also denoted by M ′ ∩MU ).

Question (Kirchberg, 2002)

Is FU (B(H)) = C · 1?



Relative commutant

M ↪→ MU via the diagonal embedding a 7→ (a, a, a, . . . )/U .
The relative commutant:

FU (M) = {a ∈ MU : ab = ba for all b ∈ M}.

(also denoted by M ′ ∩MU ).

Question (Kirchberg, 2002)

Is FU (B(H)) = C · 1?



The following (until further notice) is joint with
N. Christopher Phillips and Juris Steprāns

Theorem (FPS)

Assume V is a selective ultrafilter. Then for a ∈ B(H)V the
following are equivalent.

1. a ∈ B(H)′.

2. a has a representing sequence (bn) that is a norm-central
sequence:

lim
n
‖[c , bn]‖ = 0 for all c ∈ M.
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A solution to Kirchberg’s problem

Proposition (FPS, Sherman, folklore(?))

B(H) has no nontrivial norm-central sequences.

Corollary (FPS)

Assume V is a selective ultrafilter. Then FV(B(H)) = C.

Proposition

The Continuum Hypothesis, CH, implies the existence of a
selective ultrafilter.

Corollary (FPS)

CH implies that FV(B(H)) is trivial for some V.
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FDD von Neumann algebras

Fix a decomposition
~E = 〈Ei : i ∈ N〉

of H into finite-dimensional orthogonal subspaces.

Let

D[~E ] = {a ∈ B(H) : (∀i)a[Ei ] ⊆ Ei}.

Lemma

1. If ~E is coarser than ~F , then D[~E ] ⊇ D[~F ].

2.
⋃
~E
D[~E ] 6= B(H).
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Lemma (Farah, 2007)
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where a~E ∈ D[~E ], a~F ∈ D[~F ], c is compact and ‖c‖ < ε.
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Lemma
For any U we have

B(H)′ ∩ B(H)U =
⋂
~E

D[~E ]′ ∩ B(H)U .

Proof.
⊆ is trivial.
⊇: If a ∈LHS, write a = a~E + a~F + c . For b ∈ B(H) we have

‖[b, a]‖ = ‖[b, c]‖ ≤ ε‖b‖

for an arbitrarily small ε > 0.
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Flat ultrafilters

Definition (FPS)

An ultrafilter U is flat if there are hn : N↘ [0, 1] such that

1. hn(0) = 1,
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3. (∀f : N↗ N) limn→U ‖hn − hn ◦ f ‖∞ = 0.

For each n,
an =

∑
j

hn(j) projCξj

is in B(H).
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The existence of flat ultrafilters

Theorem (FPS)

There exists a flat ultrafilter on some countable set F.

Proof. Let

F = {h : N↘ Q ∩ [0, 1] : h(0) = 1, and (∀∞m)h(m) = 0}.

For f : N↗ N and ε > 0 let

Xf ,ε = {h ∈ F : ‖h − h ◦ f ‖∞ ≤ ε.

If n > 1/ε then

h = χ[0, f (0)) +
n − 1

n
χ[f (0),f 2(0))) + · · ·+ 1

n
χ[f n−1(0),f n(0))

belongs to Xf ,ε.
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Hence each Xf ,ε is infinite, and

Xf ,ε ∩ Xg ,δ ⊇ Xmax(f ,g),min(ε,δ).

An ultrafilter on F containing all Xf ,ε is flat.
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Theorem (FPS)

1. There is an ultrafilter U such that FU (B(H)) 6= C.

2. Assuming CH or Martin’s Axiom, there is an ultrafilter U such
that FU (B(H)) = C.

Corollary (FPS)

Assuming CH or Martin’s Axiom FU (B(H)) depends on the choice
of the ultrafilter.
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We can do with a P-point instead of a selective ultrafilter,
but Shelah proved that consistently there are no P-points.
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Fact
U is flat iff a single sequence (hn) witnesses ε-flatness of U for all
ε > 0.
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Is there a nonprincipal ultrafilter V on N such that FV(B(H)) = C?

In many models of ZFC the answer is positive.

Question
What can be said about the structure of FV(B(H)) in general?
Can it be nonabelian?

Question
Is FV(B(H)) 6= C equivalent to ‘V is flat’?
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Example

Fix n. Let τ denote the normalized trace on Mn(C).
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A von Neumann algebra (M,+, ·, ∗, ‖ · ‖) is tracial if it has a
faithful normalized trace τ .
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f dλ.

Definition
A tracial von Neumann algebra is a type II1 factor if its center is
trivial and it is infinite-dimensional.
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A variation

An ultraproduct of Mn(C), for n ∈ N:∏
n

Mn(C)/cU .

Question (S. Popa, 2008)
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Theorem (FHS, 2009)

1. If CH fails, then there are ultrafilters U and V such that the
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such that for any two ultrafilters U and V the ultraproducts of
Mn(i)(C), i ∈ N associated with U and V are isomorphic.
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Question (S. Popa, 2008)

Are all ultraproducts of Mn(C), for n ∈ N, isomorphic?

Theorem (FHS, 2009)

1. If CH fails, then there are ultrafilters U and V such that for
every increasing sequence n(i), for i ∈ N, the ultraproducts of
Mn(i)(C), associated to U and to V are not isomorphic.
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Theorem (FHS, 2009)

If M is an abelian tracial von Neumann algebra, then all of its
ultrapowers are isomorphic.

Pf. M ∼= L∞(X , µ) for some probability measure space (X , µ).

Abelian tracial von Neumann algebras
⇔

Probability measure algebras.
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reduces to Maharam’s theorem

Lemma
If A is a separable atomless measure algebra then all of its
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Pf. Immediate by the above lemma and the FHS characterization of
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Open problems

Question
Assume CH fails. If A is a countable structure with unstable
theory, how many nonisomorphic ultrapowers does it have?

(Best lower bound: as many as uncountable cardinals ≤ 2ℵ0 .
)

Theorem (Kramer–Shelah–Tent–Thomas, 2005)

If CH fails then there are 22ℵ0 nonisomorphic utrapowers of (N, <).

Question (Sherman for separable II1 factors)

Assume A is a countable model. Is there an automorphism of AU

that does not lift to an endomorphism of AN? CH implies ‘yes.’

Question
Does CH imply that all tracial ultraproducts

∏
U Mn(C) are

isomorphic?
I.e., do their theories converge?



Open problems

Question
Assume CH fails. If A is a countable structure with unstable
theory, how many nonisomorphic ultrapowers does it have?

(Best lower bound:

as many as uncountable cardinals ≤ 2ℵ0 .
)

Theorem (Kramer–Shelah–Tent–Thomas, 2005)

If CH fails then there are 22ℵ0 nonisomorphic utrapowers of (N, <).

Question (Sherman for separable II1 factors)

Assume A is a countable model. Is there an automorphism of AU

that does not lift to an endomorphism of AN? CH implies ‘yes.’

Question
Does CH imply that all tracial ultraproducts

∏
U Mn(C) are

isomorphic?
I.e., do their theories converge?



Open problems

Question
Assume CH fails. If A is a countable structure with unstable
theory, how many nonisomorphic ultrapowers does it have?

(Best lower bound: as many as uncountable cardinals ≤ 2ℵ0 .
)

Theorem (Kramer–Shelah–Tent–Thomas, 2005)

If CH fails then there are 22ℵ0 nonisomorphic utrapowers of (N, <).

Question (Sherman for separable II1 factors)

Assume A is a countable model. Is there an automorphism of AU

that does not lift to an endomorphism of AN? CH implies ‘yes.’

Question
Does CH imply that all tracial ultraproducts

∏
U Mn(C) are

isomorphic?
I.e., do their theories converge?



Open problems

Question
Assume CH fails. If A is a countable structure with unstable
theory, how many nonisomorphic ultrapowers does it have?

(Best lower bound: as many as uncountable cardinals ≤ 2ℵ0 .
I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005)

If CH fails then there are 22ℵ0 nonisomorphic utrapowers of (N, <).

Question (Sherman for separable II1 factors)

Assume A is a countable model. Is there an automorphism of AU

that does not lift to an endomorphism of AN? CH implies ‘yes.’

Question
Does CH imply that all tracial ultraproducts

∏
U Mn(C) are

isomorphic?
I.e., do their theories converge?



Open problems

Question
Assume CH fails. If A is a countable structure with unstable
theory, how many nonisomorphic ultrapowers does it have?

(Best lower bound: as many as uncountable cardinals ≤ 2ℵ0 .
I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005)

If CH fails then there are 22ℵ0 nonisomorphic utrapowers of (N, <).

Question (Sherman for separable II1 factors)

Assume A is a countable model. Is there an automorphism of AU

that does not lift to an endomorphism of AN? CH implies ‘yes.’

Question
Does CH imply that all tracial ultraproducts

∏
U Mn(C) are

isomorphic?
I.e., do their theories converge?



Open problems

Question
Assume CH fails. If A is a countable structure with unstable
theory, how many nonisomorphic ultrapowers does it have?

(Best lower bound: as many as uncountable cardinals ≤ 2ℵ0 .
I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005)

If CH fails then there are 22ℵ0 nonisomorphic utrapowers of (N, <).

Question (Sherman for separable II1 factors)

Assume A is a countable model. Is there an automorphism of AU

that does not lift to an endomorphism of AN?

CH implies ‘yes.’

Question
Does CH imply that all tracial ultraproducts

∏
U Mn(C) are

isomorphic?
I.e., do their theories converge?



Open problems

Question
Assume CH fails. If A is a countable structure with unstable
theory, how many nonisomorphic ultrapowers does it have?

(Best lower bound: as many as uncountable cardinals ≤ 2ℵ0 .
I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005)

If CH fails then there are 22ℵ0 nonisomorphic utrapowers of (N, <).

Question (Sherman for separable II1 factors)

Assume A is a countable model. Is there an automorphism of AU

that does not lift to an endomorphism of AN? CH implies ‘yes.’

Question
Does CH imply that all tracial ultraproducts

∏
U Mn(C) are

isomorphic?
I.e., do their theories converge?



Open problems

Question
Assume CH fails. If A is a countable structure with unstable
theory, how many nonisomorphic ultrapowers does it have?

(Best lower bound: as many as uncountable cardinals ≤ 2ℵ0 .
I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005)

If CH fails then there are 22ℵ0 nonisomorphic utrapowers of (N, <).

Question (Sherman for separable II1 factors)

Assume A is a countable model. Is there an automorphism of AU

that does not lift to an endomorphism of AN? CH implies ‘yes.’

Question
Does CH imply that all tracial ultraproducts

∏
U Mn(C) are

isomorphic?

I.e., do their theories converge?



Open problems

Question
Assume CH fails. If A is a countable structure with unstable
theory, how many nonisomorphic ultrapowers does it have?

(Best lower bound: as many as uncountable cardinals ≤ 2ℵ0 .
I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005)

If CH fails then there are 22ℵ0 nonisomorphic utrapowers of (N, <).

Question (Sherman for separable II1 factors)

Assume A is a countable model. Is there an automorphism of AU

that does not lift to an endomorphism of AN? CH implies ‘yes.’

Question
Does CH imply that all tracial ultraproducts

∏
U Mn(C) are

isomorphic?
I.e., do their theories converge?


