Randomness notions and partial relativization

George Barmpalias, Joseph S. Miller, André Nies

Wellington/Wisconsin/Auckland

Sofia, August 2009

Plan of the talk

- Formalizing randomness
- ▶ Between 1-randomness and 2-randomness
- Lifting randomness via oracles
 - ... and their computability-theoretic counterparts
 - ▶ Randomness reducibilities ≤_{LR}, ≤_{W2R}
 - Weak 2-randomness in between
 - Extras: recent work on weakly 2-randoms

Randomness notions

- Martin-Löf randomness is the most common formalization of randomness
- Certain criticisms have supported stronger notions (2-randomness, weak 2-randomness etc.)

(left c.e. reals, superlow and other 'effective' reals can be Martin-Löf random)

Martin-Löf randomness interacts best with computability theoretic notions.

Aim of this work

- (1) Study randomness between Martin-Löf randomness and 2-randomness.
- (2) Provide new interactions of these with computability theory.

Formalizing randomness

- Random sequences should have no special properties
- Random sequences do not belong to certain null sets
- They pass a certain class of statistical sets

Martin-Löf 's abstract approach

- Fix a countable collection of null sets.
- ► Every sequence that does not belong to any of those sets is called random.
- Random strings have measure 1.

Some randomness notions

- ▶ Martin-Löf randomness: effectively G_δ sets (Π_2^0 classes) $\cap_i V_i$ such that $\mu V_i < 2^{-i}$.
- Martin-Löf randomness relative to X: replace Π_2^0 with $\Pi_2^0[A]$
- **2-randomness**: $A = \emptyset'$
- Weak 2-randomness: Π₂ null sets
- ► Weak 1-randomness: Π₁ null sets
- Schnorr randomness: Π_2^0 null sets $\cap_i V_i$ such that $\mu V_i = 2^{-i}$.

Randomness notions and symbols

Martin-Löf randomness	ML
weak randomness relative to \emptyset'	$Kurtz[\emptyset']$
weak 2-randomness	W2R
Schnorr random relative to \emptyset'	SR[∅′]
2-randomness	$ML[\emptyset']$

Strength of notions

 $\mathsf{ML}[\emptyset'] \Rightarrow \mathsf{SR}[\emptyset'] \Rightarrow \mathsf{W2R} \Rightarrow \mathsf{Kurtz}[\emptyset'] \cap \mathsf{ML} \Rightarrow \mathsf{ML}$

Strength of notions

$$\mathsf{ML}[\emptyset'] \Rightarrow \mathsf{SR}[\emptyset'] \Rightarrow \mathsf{W2R} \Rightarrow \mathsf{Kurtz}[\emptyset'] \cap \mathsf{ML} \Rightarrow \mathsf{ML}$$

None of these implications can be reversed.

Lifting randomness via relativization

- ▶ Given two classes \mathcal{M} and \mathcal{N} , define $\text{High}(\mathcal{M}, \mathcal{N})$ to be the class containing all oracles A such that $\mathcal{M}^A \subseteq \mathcal{N}$.
- ▶ The class of oracles which can lift randomness \mathcal{M} to \mathcal{N} .
- For instance, High(ML, SR[\emptyset']) is the set of oracles A such that each set that is Martin-Löf random in A is already SR[\emptyset'].

Computability-theoretic charact. of $High(\mathcal{M}, \mathcal{N})$

Example:

Theorem (Kjos-Hanssen/Miller/Solomon)

Martin-Löf randomness relative to an oracle A is 2-randomness iff A computes an almost everywhere dominating function.

Computability-theoretic charact. of $High(\mathcal{M}, \mathcal{N})$

Example:

Theorem (Kjos-Hanssen/Miller/Solomon)

Martin-Löf randomness relative to an oracle A is 2-randomness iff A computes an almost everywhere dominating function.

 $A \in \mathsf{High}(\mathsf{ML}, \mathsf{ML}[\emptyset'])$ iff A computes an almost everywhere dominating function.

Partial relativization

- We obtain further characterizations via partial relativizations of standard notions.
- partial relativization was introduced by Simpson in his investigations of mass problems
- ... and has become a useful tool in computability and randomness

Example:

A full relativization of 'low for random' gives:

A is low for random relative to B if every B-random is $A \oplus B$ -random.

However a more useful and meaningful relation is

every B-random is A-random

We only relativize certain components of a notion.

Computability and partial relativization

- ▶ f is diagonally non-computable if $f(i) \not\simeq \varphi_i(i)$ for all $i \in \mathbb{N}$.
- C is **d.n.c. by** A if it computes a d.n.c.[A] function
- ▶ C is **c.e. traceable by** A if there is a computable function g such that for every $f \leq_T C$,

$$f(i) \in V_i$$
 and $|V_i|$ computably bounded

for an A-c.e. family (V_i) .

Randomness vs computability theoretic notions

(a)	$A \in High(ML,Kurtz[\emptyset'])$	\emptyset' is non-d.n.c. by A
(b)	$A \in High(ML,W2R)$	
(c)	$A \in High(ML,SR[\emptyset'])$	\emptyset' is c.e. traceable by A
(d)	$A \in High(W2R,ML[\emptyset'])$	A is u.a.e. dominating
(e)	$A \in High(ML,ML[\emptyset'])$	
(f)	$A \in High(Kurtz,ML)$	impossible

Randomness reducibilities

- ▶ A natural extension of Turing reducibility is ≤_{LR}
- ► $A \leq_{LR} B$ if every Martin-Löf random relative to B is also random relative to A
- ▶ ... if $B \in \mathsf{High}(\mathsf{ML}, \mathsf{ML}^A)$
- ▶ Intuitively, B can derandomize all sequences that A can.
- ▶ $A \equiv_{LR} B$ if the class of Martin-Löf randoms relative to A coincides with the class of Martin-Löf randoms relative to B

Reducibility associated with weak 2-randomness

- ► The reducibility associated with weak 2-randomness is \leq_{W2R} .
- ▶ $A \leq_{W2R} B$ if every weakly 2-random relative to B is also weakly 2-random relative to A.

Open problem

Proposition (Kjos-Hanssen, Kučera, Nies)

 $A \leq_{LR} B$ iff every $\Sigma^0_1(A)$ class of measure < 1 is contained in a $\Sigma^0_1(B)$ class of measure < 1.

Open problem

Proposition (Kjos-Hanssen, Kučera, Nies)

 $A \leq_{LR} B$ iff every $\Sigma_1^0(A)$ class of measure < 1 is contained in a $\Sigma_1^0(B)$ class of measure < 1.

Is there an analogous characterization for $A \leq_{W2R} B$?

Open problem

Proposition (Kjos-Hanssen, Kučera, Nies)

 $A \leq_{LR} B$ iff every $\Sigma_1^0(A)$ class of measure < 1 is contained in a $\Sigma_1^0(B)$ class of measure < 1.

Is there an analogous characterization for $A \leq_{W2R} B$?

Is $A \leq_{W2R} B$ equivalent to every $\Pi_2^0(A)$ null class is contained in some $\Pi_2^0(B)$ null class?

\leq_{LR} versus \leq_{W2R}

Theorem

- $ightharpoonup \leq_{W2R} implies \leq_{LR}$
- . \blacktriangleright They coincide on the initial segment of low for Ω sets
 - ▶ They coincide on the Δ_2^0 sets.
 - ▶ They do not coincide on the Δ_3^0 sets.
 - $\blacktriangleright \equiv_{W2R}$ and \equiv_{LR} coincide.

Weak 2-randomness between ML and $ML[\emptyset']$

$$2$$
-random \Rightarrow weak 2-random \Rightarrow 1-random

Informal question:

Is weak 2-randomness closer to to 1-randomness or 2-randomness?

Weak 2-randomness between ML and $ML[\emptyset']$

$$2$$
-random \Rightarrow weak 2-random \Rightarrow 1-random

Informal question:

Is weak 2-randomness closer to to 1-randomness or 2-randomness?

The definition of W2R is a slight modification of the definition of ML.

Closer to 1-randomness: results

- ▶ $A \in W2R$ iff $A \in ML$ and forms a minimal pair with \emptyset' (Hirschfeldt/Miller)
- ▶ Lifting ML to W2R is much easier than lifting W2R to $ML[\emptyset']$
 - ... making \emptyset' non-dnc by A is easier than making A a.e. dominating
 - \dots making a Δ_2^0 set non-low is easier than making it a.e. dominating.
- ▶ There is a weakly 2-random which is K-trivial relative to \emptyset' .

Two open problems from Nies' book

Problem 8.2.14 Is every weakly 2-random array computable?

Problem 3.6.9 To what extend does van Lambalgen's theorem hold for weak 2-randomness?

Two open problems from Nies' book

Problem 8.2.14 Is every weakly 2-random array computable?

Problem 3.6.9 To what extend does van Lambalgen's theorem hold for weak 2-randomness?

Recent work of Barmpalias/Downey/Ng answers these questions

Theorem (Barmpalias/Downey/Ng)

For every function f there is a weakly 2-random X and a function $g \leq_T X$ which is not dominated by f.

Corollary (Barmpalias/Downey/Ng)

There is an array non-computable weakly 2-random set.

Jumps of randoms

- Recent work includes jump inversion theorems for weakly 2-randoms and 2-randoms
- ... aiming at a full characterization of their jumps
- this work has the following corollary:

Theorem (Barmpalias/Downey/Ng)

If A is weakly 2-random relative to B and B is weakly 2-random then $A \oplus B$ is weakly 2-random. But not vise-versa.

References

Barmpalias/Miller/Nies, Randomness notions and partial relativization, submitted.

Nies, Computability and Randomness, Oxford Press 2009

Downey and Hirschfeldt, Algorithmic randomness and complexity, Springer-Verlag, to appear.

Webpage: http://www.barmpalias.net