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Randomness notions

» Martin-L6f randomness is the most common formalization
of randomness

» Certain criticisms have supported stronger notions
(2-randomness, weak 2-randomness etc.)

(left c.e. reals, superlow and other ‘effective’ reals can be
Martin-L&éf random)

» Martin-L6f randomness interacts best with computability
theoretic notions.



Aim of this work

(1) Study randomness between Martin-L6f randomness and
2-randomness.

(2) Provide new interactions of these with computability theory.



Formalizing randomness

» Random sequences should have no special properties
» Random sequences do not belong to certain null sets

» They pass a certain class of statistical sets



Martin-Lo6f ’s abstract approach

» Fix a countable collection of null sets.

» Every sequence that does not belong to any of those sets
is called random.

» Random strings have measure 1.



Some randomness notions

v

Martin-Lo6f randomness: effectively Gs sets (ng classes)
N;V; such that uV; < 27",

v

Martin-L6f randomness relative to X: replace Flg with I'Ig[A]

2-randomness: A = (/

v

v

Weak 2-randomness: I3 null sets

v

Weak 1-randomness: M9 null sets

v

Schnorr !'andomness: I'Ig null sets N;V; such that
pVi=27",



Randomness notions and symbols

Martin-L6f randomness

weak randomness relative to (/
weak 2-randomness

Schnorr random relative to ¢’
2-randomness

ML
Kurtz[(/]
W2R
SR[0']
ML[®]



Strength of notions

ML[('] = SR[('] = W2R = Kurtz[('] " ML = ML




Strength of notions

ML[('] = SR[('] = W2R = Kurtz[('] " ML = ML

None of these implications can be reversed.



Lifting randomness via relativization

» Given two classes M and N, define High(M, ) to be the
class containing all oracles A such that M4 C V.

; » The class of oracles which can lift randomness M to N.

» For instance, High(ML, SR[(']) is the set of oracles A such
that each set that is Martin-L6f random in A is already
SR[].



Computability-theoretic charact. of High(M, N)

Example:

Theorem (Kjos-Hanssen/Miller/Solomon)

Martin-Léf randomness relative to an oracle A is 2-randomness
iff A computes an almost everywhere dominating function.



Computability-theoretic charact. of High(M, N)

Example:

Theorem (Kjos-Hanssen/Miller/Solomon)

Martin-L6f randomness relative to an oracle A is 2-randomness
iff A computes an almost everywhere dominating function.

A € High(ML, ML[(']) iff A computes an almost
everywhere dominating function.



Partial relativization

» We obtain further characterizations via partial
relativizations of standard notions.

» partial relativization was introduced by Simpson in his
investigations of mass problems

» ...and has become a useful tool in computability and
randomness



Example:

A full relativization of ‘low for random’ gives:

A is low for random relative to B if every B-random is
A& B-random.

However a more useful and meaningful relation is

every B-random is A-random

We only relativize certain components of a notion.




Computability and partial relativization

» fis diagonally non-computable if f(i) 2 o;(i) for all i € N.
» Cis d.n.c. by Aif it computes a d.n.c.[A] function

» Cis c.e. traceable by A if there is a computable function g
such that for every f <7 C,

‘ f(i) € V; and | V;| computably bounded

for an A-c.e. family (V).



Randomness vs computability theoretic notions

A € High(ML, Kurtz[(])

A € High(ML, W2R)

(/ is non-d.n.c. by A

A € High(ML, SR[#])

(' is c.e. traceable by A

A € High(W2R, ML[()'])

A € High(ML, ML[#])

Ais u.a.e. dominating

A € High(Kurtz, ML)

impossible




Randomness reducibilities

v

A natural extension of Turing reducibility is <, g

v

A <, g B if every Martin-L6f random relative to B is also
random relative to A

v

...if B € High(ML, ML#)

v

Intuitively, B can derandomize all sequences that A can.

v

A =g B if the class of Martin-L6f randoms relative to A
coincides with the class of Martin-Léf randoms relative to B



Reducibility associated with weak 2-randomness

» The reducibility associated with weak 2-randomness is
<Ww2R-

» A <wor B if every weakly 2-random relative to B is also
weakly 2-random relative to A.



Open problem

Proposition (Kjos-Hanssen, Kucera, Nies)
A <,r B iff every £(A) class of measure < 1 is contained in a
¥9(B) class of measure < 1.
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Proposition (Kjos-Hanssen, Kucera, Nies)
A <,r B iff every £(A) class of measure < 1 is contained in a
¥9(B) class of measure < 1.

Is there an analogous characterization for A <y.r B?



Open problem

Proposition (Kjos-Hanssen, Kucera, Nies)
A <,r B iff every £(A) class of measure < 1 is contained in a
¥9(B) class of measure < 1.

Is there an analogous characterization for A <y.r B?

Is A <w2or B equivalent to every N3(A) null class is
contained in some N3(B) null class?




<LR Versus <w2zp
Theorem
> <pop implies <;r
. » They coincide on the initial segment of low for 2 sets
» They coincide on the A3 sets.
» They do not coincide on the Ag sets.

» =wor and =g coincide.



Weak 2-randomness between ML and ML[()]

’ 2-random \ = \ weak 2-random \ = \ 1-random \

Informal question:

Is weak 2-randomness closer to to 1-randomness or
2-randomness?




Weak 2-randomness between ML and ML[()]

’ 2-random \ = \ weak 2-random \ = \ 1-random \

Informal question:

Is weak 2-randomness closer to to 1-randomness or
2-randomness?

The definition of W2R is a slight modification of the
definition of ML.



Closer to 1-randomness: results

» Ac W2Riff A€ ML and forms a minimal pair with ()’
(Hirschfeldt/Miller)

» Lifting ML to W2R is much easier than lifting W2R to ML[(]

...making (" non-dnc by A is easier than making A a.e.
dominating

...making a AJ set non-low is easier than making it a.e.
dominating.

» There is a weakly 2-random which is K-trivial relative to (.



Two open problems from Nies’ book

Problem 8.2.14 Is every weakly 2-random array
computable?

Problem 3.6.9 To what extend does van Lambalgen’s
theorem hold for weak 2-randomness?



Two open problems from Nies’ book

Problem 8.2.14 Is every weakly 2-random array
computable?

Problem 3.6.9 To what extend does van Lambalgen’s
theorem hold for weak 2-randomness?

Recent work of Barmpalias/Downey/Ng answers these
questions




Theorem (Barmpalias/Downey/NQ)

For every function f there is a weakly 2-random X and a
function g <t X which is not dominated by f.

Corollary (Barmpalias/Downey/Ng)
There is an array non-computable weakly 2-random set.



Jumps of randoms

» Recent work includes jump inversion theorems for weakly
2-randoms and 2-randoms

» ...aiming at a full characterization of their jumps
“» this work has the following corollary:

Theorem (Barmpalias/Downey/NQ)

If A is weakly 2-random relative to B and B is weakly 2-random
then A& B is weakly 2-random. But not vise-versa.
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