Reverse Mathematics of Model Theory

Or: What I Would Tell My Graduate Student Self About Reverse Mathematics

Denis R. Hirschfeldt — University of Chicago

Logic Colloquium 2009, Sofia, Bulgaria
Some Goals

- Revealing the "fundamental combinatorics" of theorems.
- Discovering hidden relationships between theorems.
- Finding correspondences between computability theoretic notions and combinatorial principles.

We'll examine some of these in the context of model-theoretic principles.

The Completeness Theorem is provable in RCA₀.
Some Goals

- Revealing the “fundamental combinatorics” of theorems.
Some Goals

- Revealing the “fundamental combinatorics” of theorems.
- Discovering hidden relationships between theorems.
Some Goals

- Revealing the “fundamental combinatorics” of theorems.
- Discovering hidden relationships between theorems.
- Finding correspondences between computability theoretic notions and combinatorial principles.
Some Goals

- Revealing the “fundamental combinatorics” of theorems.
- Discovering hidden relationships between theorems.
- Finding correspondences between computability theoretic notions and combinatorial principles.

We’ll examine some of these in the context of model-theoretic principles.
Some Goals

- Revealing the “fundamental combinatorics” of theorems.
- Discovering hidden relationships between theorems.
- Finding correspondences between computability theoretic notions and combinatorial principles.

We’ll examine some of these in the context of model-theoretic principles.

The Completeness Theorem is provable in RCA₀.

But what if we want to produce models with particular properties?
All our theories T are countable, complete, and consistent.

All our models \mathcal{M} are countable.

We work in a computable language.
Conventions and Basic Definitions I

All our theories T are countable, complete, and consistent.

All our models \mathcal{M} are countable.

We work in a computable language.

T is decidable if it is computable.

\mathcal{M} is decidable if its elementary diagram is computable.

In reverse mathematics, we identify \mathcal{M} with its elementary diagram.
A partial type Γ of T is a set of formulas $\{\psi_n(\vec{x})\}_{n \in \omega}$ consistent with T.

Γ is a (complete) type if it is maximal.

Γ is principal if there is a consistent φ s.t. $\forall \psi \in \Gamma \ (T + \varphi \vdash \psi)$.
A partial type Γ of T is a set of formulas $\{\psi_n(\vec{x})\}_{n \in \omega}$ consistent with T.

Γ is a (complete) type if it is maximal.

Γ is principal if there is a consistent φ s.t. $\forall \psi \in \Gamma (T + \varphi \vdash \psi)$.

$\vec{a} \in M$ has type Γ if $\forall \psi \in \Gamma (M \models \psi(\vec{a}))$.

We write $\vec{a} \equiv \vec{b}$ if \vec{a} and \vec{b} have the same complete type.
A partial type Γ of T is a set of formulas $\{\psi_n(\bar{x})\}_{n \in \omega}$ consistent with T.

Γ is a (complete) type if it is maximal.

Γ is principal if there is a consistent φ s.t. $\forall \psi \in \Gamma \ (T + \varphi \vdash \psi)$.

$\bar{a} \in \mathcal{M}$ has type Γ if $\forall \psi \in \Gamma \ (\mathcal{M} \models \psi(\bar{a}))$.

We write $\bar{a} \equiv \bar{b}$ if \bar{a} and \bar{b} have the same complete type.

\mathcal{M} realizes Γ if some $\bar{a} \in \mathcal{M}$ has type Γ. Otherwise \mathcal{M} omits Γ.

The type spectrum of \mathcal{M} is the set of types it realizes.
Homogeneous models
\mathcal{M} is homogeneous if for all $\bar{a} \equiv \bar{b} \in \mathcal{M}$, we have $(\mathcal{M}, \bar{a}) \cong (\mathcal{M}, \bar{b})$.

Equivalently, \mathcal{M} is homogeneous if for all $\bar{a} \equiv \bar{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\bar{a}c \equiv \bar{b}d$.

HOM: Every theory has a homogeneous model.
\(\mathcal{M} \) is **homogeneous** if for all \(\bar{a} \equiv \bar{b} \in \mathcal{M} \), we have \((\mathcal{M}, \bar{a}) \cong (\mathcal{M}, \bar{b})\).

Equivalently, \(\mathcal{M} \) is **homogeneous** if for all \(\bar{a} \equiv \bar{b} \in \mathcal{M} \) and all \(c \in \mathcal{M} \), there is a \(d \in \mathcal{M} \) s.t. \(\bar{a}c \equiv \bar{b}d \).

This equivalence requires ACA\(_0\).
\mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, we have $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

Equivalently, \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.

This equivalence requires ACA$_0$.

Two homogeneous models with the same type spectra are isomorphic.
Homogeneous Models

\mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, we have $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

Equivalently, \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.

This equivalence requires ACA$_0$.

Two homogeneous models with the same type spectra are isomorphic.

HOM: Every theory has a homogeneous model.
Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum's Lemma (every consistent set of sentences can be extended to a complete theory). Lindenbaum's Lemma is equivalent to WKL$_0$ over RCA$_0$.

Another method: Scott sets of nonstandard models of Peano Arithmetic. A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and d is PA then T has a d-decidable homogeneous model. d is PA iff every infinite binary tree has an infinite d-computable path.
Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma (every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL_0 over RCA_0.

Another method: Scott sets of nonstandard models of Peano Arithmetic. A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker).

If T is decidable and d is PA then T has a d-decidable homogeneous model.

d is PA iff every infinite binary tree has an infinite d-computable path.
Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma (every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL\(_0\) over RCA\(_0\).
Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma (every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL₀ over RCA₀.

Another method: Scott sets of nonstandard models of Peano Arithmetic
Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma (every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL\(_0\) over RCA\(_0\).

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If \(T\) is decidable and \(d\) is PA then \(T\) has a \(d\)-decidable homogeneous model.
Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma (every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL$_0$ over RCA$_0$.

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and d is PA then T has a d-decidable homogeneous model.

d is PA iff every infinite binary tree has an infinite d-computable path.
A Reversal

Thm (Macintyre and Marker). $\text{WKL}_0 \vdash \text{HOM}$.
Thm (Macintyre and Marker). $\text{WKL}_0 \vdash \text{HOM}$.

Thm (Csima, Harizanov, Hirschfeldt, and Soare). There is a decidable T s.t. any homogeneous model of T has PA degree.
A Reversal

Thm (Macintyre and Marker). $\text{WKL}_0 \vdash \text{HOM}$.

Thm (Csima, Harizanov, Hirschfeldt, and Soare). There is a decidable T s.t. any homogeneous model of T has PA degree.

Thm (Lange). $\text{RCA}_0 \vdash \text{HOM} \rightarrow \text{WKL}_0$.
Atomic and homogeneous models
\(\mathcal{M} \) is **atomic** if every type it realizes is principal.
\(\mathcal{M} \) is **atomic** if every type it realizes is principal.

\(\mathcal{M} \) is **prime** if it can be elementarily embedded in every model of \(T \).

\(\mathcal{M} \) is atomic iff \(\mathcal{M} \) is prime.
Atomic Models

\[M \] is atomic if every type it realizes is principal.

\[M \] is prime if it can be elementarily embedded in every model of \(T \).

\[M \] is atomic iff \(M \) is prime.

If \(M \) is atomic then it is homogeneous.

Any two atomic models of \(T \) are isomorphic.
Atomic Models

\(\mathcal{M} \) is **atomic** if every type it realizes is principal.

\(\mathcal{M} \) is **prime** if it can be elementarily embedded in every model of \(T \).

\(\mathcal{M} \) is atomic iff \(\mathcal{M} \) is prime.

If \(\mathcal{M} \) is atomic then it is homogeneous.

Any two atomic models of \(T \) are isomorphic.

\(T \) is **atomic** if every formula consistent with \(T \) can be extended to a principal type of \(T \).

\(T \) has an atomic model iff \(T \) is atomic.
RCA₀ ⊨ If T has an atomic model then T is atomic.
RCA_0 \vdash \text{If } T \text{ has an atomic model then } T \text{ is atomic.}

\textbf{AMT:} \text{If } T \text{ is atomic then } T \text{ has an atomic model.}
$\text{RCA}_0 \vdash$ If T has an atomic model then T is atomic.

AMT: If T is atomic then T has an atomic model.

$\text{ACA}_0 \vdash \text{AMT}$.

Thm (Goncharov and Nurtazin; Millar). $\text{RCA}_0 \nvdash \text{AMT}$.

RCA₀ ⊢ If T has an atomic model then T is atomic.

AMT: If T is atomic then T has an atomic model.

ACA₀ ⊢ AMT.

Thm (Goncharov and Nurtazin; Millar). RCA₀ $\not\models$ AMT.

Thm (Hirschfeldt, Shore, and Slaman). AMT and WKL₀ are incomparable over RCA₀.
A linear order is **stable** if every element has either finitely many predecessors or finitely many successors.
A linear order is stable if every element has either finitely many predecessors or finitely many successors.

(S)ADS: Every infinite (stable) linear order has an infinite ascending or descending sequence.
A linear order is **stable** if every element has either finitely many predecessors or finitely many successors.

SADS: Every infinite (stable) linear order has an infinite ascending or descending sequence.

SADS is strictly weaker than ADS, which is strictly weaker than RT_2^2.
A linear order is **stable** if every element has either finitely many predecessors or finitely many successors.

(S)ADS: Every infinite (stable) linear order has an infinite ascending or descending sequence.

SADS is strictly weaker than ADS, which is strictly weaker than RT\(_2\).

Thm (Hirschfeldt, Shore, and Slaman).
\[\text{RCA}_0 + \text{SADS} \vdash \text{AMT}. \]
\[\text{RCA}_0 + \text{AMT} \not\vdash \text{SADS}. \]
Goncharov gave closure conditions on a set of types \(S \) of \(T \) necessary and sufficient for \(S \) to be the type spectrum of a homogeneous model of \(T \).
The Homogeneous Model Theorem

Goncharov gave closure conditions on a set of types S of T necessary and sufficient for S to be the type spectrum of a homogeneous model of T.

- Closure under permutations of variables.
- Closure under subtypes.
- Closure under unions of types on disjoint sets of variables.
- Closure under type / type amalgamation.
- Closure under type / formula amalgamation.
Goncharov gave closure conditions on a set of types S of T necessary and sufficient for S to be the type spectrum of a homogeneous model of T.

- Closure under permutations of variables.
- Closure under subtypes.
- Closure under unions of types on disjoint sets of variables.
- Closure under type / type amalgamation.
- Closure under type / formula amalgamation.

If S satisfies these conditions, we say it is closed.

HMT: If S is closed then there is a homogeneous model of T with type spectrum S.
Computability theoretic results suggest that HMT behaves like AMT:
Computability theoretic results suggest that HMT behaves like AMT:

\[d \text{ is low if } \Delta^0_2, d = \Delta^0_2. \]
Computability theoretic results suggest that HMT behaves like AMT:

\[d \text{ is low if } \Delta_{d}^{0} = \Delta_{2}^{0}. \]

Thm (Csima). Every decidable atomic \(T \) has a low atomic model.

Thm (Lange). For every computable closed \(S \), there is a low homogeneous model with type spectrum \(S \).
Computability theoretic results suggest that HMT behaves like AMT:

\(d \) is low_2 if \(\Delta^0_3, d = \Delta^0_3 \).
Computability theoretic results suggest that HMT behaves like AMT:
\[\text{d is low}_2 \text{ if } \Delta^0_{\text{d}} = \Delta^0_3. \]

Thm (Csima, Hirschfeldt, Knight, and Soare). TFAE if \(d \leq 0' \):
- Every decidable atomic \(T \) has a \(d \)-decidable atomic model.
- \(d \) is nonlow\(_2\).

Thm (Lange). TFAE if \(d \leq 0' \):
- For every computable closed \(S \) there is a \(d \)-decidable homogeneous model of \(T \) with type spectrum \(S \).
- \(d \) is nonlow\(_2\).
These “coincidences” have recently been explained:
These “coincidences” have recently been explained:

\[
\text{Thm (Hirschfeldt, Lange, and Shore). } \text{RCA}_0 \vdash \text{AMT} \iff \text{HMT}.
\]
Atomic models and type omitting
Thm (Millar). Let T be decidable.

Let A be a computable set of complete types of T. There is a decidable model of T omitting all nonprincipal types in A.

Let B be a computable set of nonprincipal partial types of T. There is a decidable model of T omitting all partial types in B.
Thm (Millar). Let T be decidable.

Let A be a computable set of complete types of T. There is a decidable model of T omitting all nonprincipal types in A.

Let B be a computable set of nonprincipal partial types of T. There is a decidable model of T omitting all partial types in B.

Thm (Millar). There is a decidable T and a computable set of partial types C of T s.t. no decidable model of T omits all nonprincipal partial types in C.
Thm (Millar). There is a decidable T and a computable set of partial types C of T s.t. no decidable model of T omits all nonprincipal partial types in C.
Thm (Millar). There is a decidable T and a computable set of partial types C of T s.t. no decidable model of T omits all nonprincipal partial types in C.

Thm (Csima). Let T be decidable and let C be a computable set of partial types of T. If $0 < d \leq 0'$ then there is a d-decidable model of T omitting all nonprincipal partial types in C.
Thm (Goncharov and Nurtazin; Harrington). Let T be a decidable atomic theory s.t. the types of T are uniformly computable. Then T has a decidable atomic model.
Thm (Goncharov and Nurtazin; Harrington). Let T be a decidable atomic theory s.t. the types of T are uniformly computable. Then T has a decidable atomic model.

Thm (Goncharov and Nurtazin; Millar). There is a decidable atomic T s.t. each type of T is computable, but T has no decidable atomic model.
Thm (Goncharov and Nurtazin; Harrington). Let T be a decidable atomic theory s.t. the types of T are uniformly computable. Then T has a decidable atomic model.

Thm (Goncharov and Nurtazin; Millar). There is a decidable atomic T s.t. each type of T is computable, but T has no decidable atomic model.

Thm (Csima). Let T be a decidable atomic theory s.t. each type of T is computable, and let $0 < d \leq 0'$. Then T has a d-decidable atomic model.
Thm (Csima). Let T be decidable and let C be a computable set of partial types of T. If $0 < d \leq 0'$ then there is a d-decidable model of T omitting all nonprincipal partial types in C.

Let T be a decidable atomic theory s.t. each type of T is computable, and let $0 < d \leq 0'$. Then T has a d-decidable atomic model.
Thm (Csima). Let T be decidable and let C be a computable set of partial types of T. If $0 < d \leq 0'$ then there is a d-decidable model of T omitting all nonprincipal partial types in C.

Let T be a decidable atomic theory s.t. each type of T is computable, and let $0 < d \leq 0'$. Then T has a d-decidable atomic model.

Let T be a decidable atomic theory s.t. each type of T is computable.

There is a computable set of partial types C containing every complete type of T.
Thm (Csima). Let T be decidable and let C be a computable set of partial types of T. If $0 < d \leq 0'$ then there is a d-decidable model of T omitting all nonprincipal partial types in C.

Let T be a decidable atomic theory s.t. each type of T is computable, and let $0 < d \leq 0'$. Then T has a d-decidable atomic model.

Let T be a decidable atomic theory s.t. each type of T is computable.

There is a computable set of partial types C containing every complete type of T.

Omitting C yields an atomic model of T.
Thm (Hirschfeldt). Let T be a decidable atomic theory s.t. each type of T is computable, and let $d > 0$. Then T has a d-decidable atomic model.
Thm (Hirschfeldt). Let T be a decidable atomic theory s.t. each type of T is computable, and let $d > 0$. Then T has a d-decidable atomic model.

f majorizes g if $f(n) \geq g(n)$ for all n.

d is hyperimmune if there is a d-computable g not majorized by any computable f.
Omitting Types and Atomic Models

Thm (Hirschfeldt). Let T be a decidable atomic theory s.t. each type of T is computable, and let $d > 0$. Then T has a d-decidable atomic model.

f majorizes g if $f(n) \geq g(n)$ for all n.

d is *hyperimmune* if there is a d-computable g not majorized by any computable f.

Thm (Hirschfeldt, Shore, and Slaman). Let T be decidable and let C be a computable set of partial types of T. If d is hyperimmune then there is a d-decidable model of T omitting all nonprincipal partial types in C.

There is a decidable T and a computable set C of partial types of T s.t. every model of T that omits C has hyperimmune degree.
OPT: Let S be a set of partial types of T. There is a model of T omitting all nonprincipal types in S.
OPT: Let S be a set of partial types of T. There is a model of T omitting all nonprincipal types in S.

HYP: For every X there is a g not majorized by any X-computable f.

Theorem (Hirschfeldt, Shore, and Slaman).

$$\text{RCA}_0 \vdash \text{OPT} \leftrightarrow \text{HYP}.$$
OPT: Let S be a set of partial types of T. There is a model of T omitting all nonprincipal types in S.

HYP: For every X there is a g not majorized by any X-computable f.

Thm (Hirschfeldt, Shore, and Slaman). $\text{RCA}_0 \vdash \text{OPT} \iff \text{HYP}$.
Partial types Γ and Δ of T are equivalent if they imply the same formulas over T.

$\left(\Delta_n\right)_{n \in \omega}$ is a subenumeration of the partial types of T if for every partial type Γ of T there is an n s.t. Γ and Δ_n are equivalent.
Partial types Γ and Δ of T are equivalent if they imply the same formulas over T.

$(\Delta_n)_{n \in \omega}$ is a subenumeration of the partial types of T if for every partial type Γ of T there is an n s.t. Γ and Δ_n are equivalent.

\textbf{AST}: If T is atomic and its partial types have a subenumeration, then T has an atomic model.
Partial types Γ and Δ of T are equivalent if they imply the same formulas over T.

$\left(\Delta_n\right)_{n\in\omega}$ is a subenumeration of the partial types of T if for every partial type Γ of T there is an n s.t. Γ and Δ_n are equivalent.

AST: If T is atomic and its partial types have a subenumeration, then T has an atomic model.

Thm (Hirschfeldt, Shore, and Slaman). $\text{RCA}_0 \vdash \text{AST} \iff \forall X \exists Y (Y \not\preceq_T X)$.