Reverse Mathematics of Model Theory

Or: What | Would Tell My Graduate Student Self About Reverse Mathematics
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» Revealing the “fundamental combinatorics” of theorems.

» Discovering hidden relationships between theorems.

» Finding correspondences between computability theoretic notions and
combinatorial principles.

We'll examine some of these in the context of model-theoretic principles.
The Completeness Theorem is provable in RCAg.

But what if we want to produce models with particular properties?
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Conventions and Basic Definitions |

All our theories T are countable, complete, and consistent.
All our models M are countable.

We work in a computable language.

T is decidable if it is computable.
M is decidable if its elementary diagram is computable.

In reverse mathematics, we identify M with its elementary diagram.
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Conventions and Basic Definitions Il

A partial type I' of T is a set of formulas {1,(X)}necw consistent with T.
Iis a (complete) type if it is maximal.
I is principal if there is a consistent p s.t. Vi € I (T +¢ F ).

de M has type Iif Vip € T (M E 9(3)).

We write 3= b if 3 and b have the same complete type.

M realizes T if some 3 € M has type . Otherwise M omits T.

The type spectrum of M is the set of types it realizes.
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M is homogeneous if for all 3= b € M, we have (M, 3) = (M, b).

Equivalently, M is homogeneous if for all 3 = be M andall ce M,
there isa d € M s.t. 3c = bd.

This equivalence requires ACAg.

Two homogeneous models with the same type spectra are isomorphic.

HOM: Every theory has a homogeneous model.
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One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma
(every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKLy over RCAg.

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and d is PA
then T has a d-decidable homogeneous model.

d is PA iff every infinite binary tree has an infinite d-computable path.
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Thm (Macintyre and Marker). WKLy - HOM.

Thm (Csima, Harizanov, Hirschfeldt, and Soare). There is a decidable
T s.t. any homogeneous model of T has PA degree.

Thm (Lange). RCAq - HOM — WKLo,
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M is atomic if every type it realizes is principal.

M is prime if it can be elementarily embedded in every model of T.
M is atomic iff M is prime.

If M is atomic then it is homogeneous.

Any two atomic models of T are isomorphic.

T is atomic if every formula consistent with T can be extended to a
principal type of T.

T has an atomic model iff T is atomic.
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AMT: If T is atomic then T has an atomic model.

ACAp = AMT.

Thm (Goncharov and Nurtazin; Millar). RCAg ¥ AMT.

Thm (Hirschfeldt, Shore, and Slaman). AMT and WKLg are
incomparable over RCA,.
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The Atomic Model Theorem Il

A linear order is stable if every element has either finitely many
predecessors or finitely many successors.

(S)ADS: Every infinite (stable) linear order has an infinite ascending or
descending sequence.

SADS s strictly weaker than ADS, which is strictly weaker than RT3.

Thm (Hirschfeldt, Shore, and Slaman). RCAy + SADS - AMT.
RCAo + AMT ¥ SADS.
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Goncharov gave closure conditions on a set of types S of T necessary and
sufficient for S to be the type spectrum of a homogeneous model of T.

Closure under permutations of variables.

Closure under subtypes.

>
>
» Closure under unions of types on disjoint sets of variables.
» Closure under type / type amalgamation.

>

Closure under type / formula amalgamation.

If S satisfies these conditions, we say it is closed.

HMT: If S is closed then there is a homogeneous model of T with type
spectrum S.
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Computability theoretic results suggest that HMT behaves like AMT:

d is low if A = AJ.

Thm (Csima). Every decidable atomic T has a low atomic model.

Thm (Lange). For every computable closed S, there is a low
homogeneous model with type spectrum S.
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Computability theoretic results suggest that HMT behaves like AMT:
d is low, if ASY = AY.

Thm (Csima, Hirschfeldt, Knight, and Soare). TFAE if d < 0
- Every decidable atomic T has a d-decidable atomic model.

- d is nonlows.

Thm (Lange). TFAE if d < 0"

- For every computable closed S there is a d-decidable homogeneous
model of T with type spectrum S.

- d is nonlows.
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These “coincidences” have recently been explained:

Thm (Hirschfeldt, Lange, and Shore). RCAy - AMT « HMT.
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Thm (Millar). There is a decidable T and a computable set of partial
types C of T s.t. no decidable model of T omits all nonprincipal partial
types in C.
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Thm (Millar). There is a decidable T and a computable set of partial
types C of T s.t. no decidable model of T omits all nonprincipal partial
types in C.

Thm (Csima). Let T be decidable and let C be a computable set of
partial types of T. If 0 < d < 0’ then there is a d-decidable model of T
omitting all nonprincipal partial types in C.
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let 0 <d <0 Then T has a d-decidable atomic model.

Let T be a decidable atomic theory s.t. each type of T is computable.

There is a computable set of partial types C containing every complete
type of T.

Omitting C yields an atomic model of T.
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Omitting Types and Atomic Models

Thm (Hirschfeldt). Let T be a decidable atomic theory s.t. each type of
T is computable, and let d > 0. Then T has a d-decidable atomic model.

f majorizes g if f(n) > g(n) for all n.

d is hyperimmune if there is a d-computable g not majorized by any
computable f.

Thm (Hirschfeldt, Shore, and Slaman). Let T be decidable and let C
be a computable set of partial types of T. If d is hyperimmune then there
is a d-decidable model of T omitting all nonprincipal partial types in C.

There is a decidable T and a computable set C of partial types of T s.t.
every model of T that omits C has hyperimmune degree.
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OPT: Let S be a set of partial types of T. There is a model of T
omitting all nonprincipal types in S.

HYP: For every X there is a g not majorized by any X-computable f.

Thm (Hirschfeldt, Shore, and Slaman). RCAy - OPT < HYP.
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Partial types I and A of T are equivalent if they imply the same formulas
over T.

(Ap)new is a subenumeration of the partial types of T if for every partial
type [ of T thereis an ns.t. [ and A, are equivalent.

AST: If T is atomic and its partial types have a subenumeration, then T
has an atomic model.

Thm (Hirschfeldt, Shore, and Slaman). RCAgF AST < VX3Y (Y &1 X).




