Reverse Mathematics of Model Theory

Or: What I Would Tell My Graduate Student Self About Reverse Mathematics

Denis R. Hirschfeldt — University of Chicago

Logic Colloquium 2009, Sofia, Bulgaria

▶ Revealing the "fundamental combinatorics" of theorems.

- ▶ Revealing the "fundamental combinatorics" of theorems.
- Discovering hidden relationships between theorems.

- ► Revealing the "fundamental combinatorics" of theorems.
- Discovering hidden relationships between theorems.
- Finding correspondences between computability theoretic notions and combinatorial principles.

- ► Revealing the "fundamental combinatorics" of theorems.
- Discovering hidden relationships between theorems.
- Finding correspondences between computability theoretic notions and combinatorial principles.

We'll examine some of these in the context of model-theoretic principles.

- ► Revealing the "fundamental combinatorics" of theorems.
- Discovering hidden relationships between theorems.
- Finding correspondences between computability theoretic notions and combinatorial principles.

We'll examine some of these in the context of model-theoretic principles.

The Completeness Theorem is provable in RCA₀.

But what if we want to produce models with particular properties?

Conventions and Basic Definitions I

All our theories T are countable, complete, and consistent.

All our models \mathcal{M} are countable.

We work in a computable language.

Conventions and Basic Definitions I

All our theories T are countable, complete, and consistent.

All our models \mathcal{M} are countable.

We work in a computable language.

T is decidable if it is computable.

 ${\mathcal M}$ is decidable if its elementary diagram is computable.

In reverse mathematics, we identify ${\cal M}$ with its elementary diagram.

Conventions and Basic Definitions II

A partial type Γ of T is a set of formulas $\{\psi_n(\vec{x})\}_{n\in\omega}$ consistent with T.

 Γ is a (complete) type if it is maximal.

 Γ is principal if there is a consistent φ s.t. $\forall \psi \in \Gamma \ (T + \varphi \vdash \psi)$.

Conventions and Basic Definitions II

A partial type Γ of T is a set of formulas $\{\psi_n(\vec{x})\}_{n\in\omega}$ consistent with T.

 Γ is a (complete) type if it is maximal.

 Γ is principal if there is a consistent φ s.t. $\forall \psi \in \Gamma \ (T + \varphi \vdash \psi)$.

 $\vec{a} \in \mathcal{M}$ has type Γ if $\forall \psi \in \Gamma \ (\mathcal{M} \vDash \psi(\vec{a}))$.

We write $\vec{a} \equiv \vec{b}$ if \vec{a} and \vec{b} have the same complete type.

Conventions and Basic Definitions II

A partial type Γ of T is a set of formulas $\{\psi_n(\vec{x})\}_{n\in\omega}$ consistent with T.

 Γ is a (complete) type if it is maximal.

 Γ is principal if there is a consistent φ s.t. $\forall \psi \in \Gamma \ (T + \varphi \vdash \psi)$.

 $\vec{a} \in \mathcal{M}$ has type Γ if $\forall \psi \in \Gamma (\mathcal{M} \vDash \psi(\vec{a}))$.

We write $\vec{a} \equiv \vec{b}$ if \vec{a} and \vec{b} have the same complete type.

 \mathcal{M} realizes Γ if some $\vec{a} \in \mathcal{M}$ has type Γ . Otherwise \mathcal{M} omits Γ .

The type spectrum of \mathcal{M} is the set of types it realizes.

Homogeneous models

Homogeneous Models

 \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, we have $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

Equivalently, \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.

Homogeneous Models

 \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, we have $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

Equivalently, \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.

This equivalence requires ACA₀.

 \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, we have $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

Equivalently, \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.

This equivalence requires ACA₀.

Two homogeneous models with the same type spectra are isomorphic.

 \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$, we have $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

Equivalently, \mathcal{M} is homogeneous if for all $\vec{a} \equiv \vec{b} \in \mathcal{M}$ and all $c \in \mathcal{M}$, there is a $d \in \mathcal{M}$ s.t. $\vec{a}c \equiv \vec{b}d$.

This equivalence requires ACA₀.

Two homogeneous models with the same type spectra are isomorphic.

HOM: Every theory has a homogeneous model.

One method: elementary chains / iterated extensions

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum's Lemma (every consistent set of sentences can be extended to a complete theory).

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum's Lemma (every consistent set of sentences can be extended to a complete theory).

Lindenbaum's Lemma is equivalent to WKL_0 over RCA_0 .

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum's Lemma (every consistent set of sentences can be extended to a complete theory).

Lindenbaum's Lemma is equivalent to WKL₀ over RCA₀.

Another method: Scott sets of nonstandard models of Peano Arithmetic

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum's Lemma (every consistent set of sentences can be extended to a complete theory).

Lindenbaum's Lemma is equivalent to WKL₀ over RCA₀.

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and **d** is PA then T has a **d**-decidable homogeneous model.

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum's Lemma (every consistent set of sentences can be extended to a complete theory).

Lindenbaum's Lemma is equivalent to WKL₀ over RCA₀.

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and d is PA then T has a d-decidable homogeneous model.

d is PA iff every infinite binary tree has an infinite **d**-computable path.

Thm (Macintyre and Marker). WKL₀ \vdash HOM.

Thm (Macintyre and Marker). WKL₀ \vdash HOM.

Thm (Csima, Harizanov, Hirschfeldt, and Soare). There is a decidable T s.t. any homogeneous model of T has PA degree.

Thm (Macintyre and Marker). WKL₀ \vdash HOM.

Thm (Csima, Harizanov, Hirschfeldt, and Soare). There is a decidable T s.t. any homogeneous model of T has PA degree.

Thm (Lange). $\mathsf{RCA}_0 \vdash \mathsf{HOM} \rightarrow \mathsf{WKL}_0$.

Atomic and homogeneous models

Atomic Models

 ${\mathcal M}$ is atomic if every type it realizes is principal.

 $\ensuremath{\mathcal{M}}$ is atomic if every type it realizes is principal.

 ${\mathcal M}$ is prime if it can be elementarily embedded in every model of ${\mathcal T}.$

 ${\mathcal M}$ is atomic iff ${\mathcal M}$ is prime.

 ${\mathcal M}$ is atomic if every type it realizes is principal.

 ${\mathcal M}$ is prime if it can be elementarily embedded in every model of ${\mathcal T}.$

 ${\mathcal M}$ is atomic iff ${\mathcal M}$ is prime.

If $\ensuremath{\mathcal{M}}$ is atomic then it is homogeneous.

Any two atomic models of T are isomorphic.

 ${\mathcal M}$ is atomic if every type it realizes is principal.

 $\mathcal M$ is prime if it can be elementarily embedded in every model of $\mathcal T$.

 ${\mathcal M}$ is atomic iff ${\mathcal M}$ is prime.

If $\ensuremath{\mathcal{M}}$ is atomic then it is homogeneous.

Any two atomic models of T are isomorphic.

T is atomic if every formula consistent with T can be extended to a principal type of T.

T has an atomic model iff T is atomic.

The Atomic Model Theorem I

 $\mathsf{RCA}_0 \vdash \mathsf{If} \ T$ has an atomic model then T is atomic.

 $RCA_0 \vdash If T$ has an atomic model then T is atomic.

AMT: If T is atomic then T has an atomic model.

 $RCA_0 \vdash If T$ has an atomic model then T is atomic.

AMT: If *T* is atomic then *T* has an atomic model.

 $ACA_0 \vdash AMT.$

Thm (Goncharov and Nurtazin; Millar). RCA₀ \nvDash AMT.

 $RCA_0 \vdash If T$ has an atomic model then T is atomic.

AMT: If *T* is atomic then *T* has an atomic model.

 $ACA_0 \vdash AMT.$

Thm (Goncharov and Nurtazin; Millar). RCA₀ \nvDash AMT.

Thm (Hirschfeldt, Shore, and Slaman). AMT and WKL₀ are incomparable over RCA₀.

The Atomic Model Theorem II

A linear order is stable if every element has either finitely many predecessors or finitely many successors.

A linear order is stable if every element has either finitely many predecessors or finitely many successors.

(S)ADS: Every infinite (stable) linear order has an infinite ascending or descending sequence.

A linear order is stable if every element has either finitely many predecessors or finitely many successors.

(S)ADS: Every infinite (stable) linear order has an infinite ascending or descending sequence.

SADS is strictly weaker than ADS, which is strictly weaker than RT_2^2 .

A linear order is stable if every element has either finitely many predecessors or finitely many successors.

(S)ADS: Every infinite (stable) linear order has an infinite ascending or descending sequence.

SADS is strictly weaker than ADS, which is strictly weaker than RT_2^2 .

Thm (Hirschfeldt, Shore, and Slaman). $RCA_0 + SADS \vdash AMT$. $RCA_0 + AMT \nvDash SADS$.

The Homogeneous Model Theorem

Goncharov gave closure conditions on a set of types S of T necessary and sufficient for S to be the type spectrum of a homogeneous model of T.

The Homogeneous Model Theorem

Goncharov gave closure conditions on a set of types S of T necessary and sufficient for S to be the type spectrum of a homogeneous model of T.

- Closure under permutations of variables.
- Closure under subtypes.
- Closure under unions of types on disjoint sets of variables.
- ► Closure under type / type amalgamation.
- ► Closure under type / formula amalgamation.

The Homogeneous Model Theorem

Goncharov gave closure conditions on a set of types S of T necessary and sufficient for S to be the type spectrum of a homogeneous model of T.

- Closure under permutations of variables.
- Closure under subtypes.
- Closure under unions of types on disjoint sets of variables.
- Closure under type / type amalgamation.
- Closure under type / formula amalgamation.

If S satisfies these conditions, we say it is closed.

HMT: If S is closed then there is a homogeneous model of T with type spectrum S.

The Homogeneous Model Theorem and AMT I

Computability theoretic results suggest that HMT behaves like AMT:

The Homogeneous Model Theorem and AMT I

Computability theoretic results suggest that HMT behaves like AMT:

d is low if $\Delta_2^{0,\mathbf{d}} = \Delta_2^0$.

The Homogeneous Model Theorem and AMT I

Computability theoretic results suggest that HMT behaves like AMT:

d is low if $\Delta_2^{0,\mathbf{d}} = \Delta_2^0$.

Thm (Csima). Every decidable atomic T has a low atomic model.

Thm (Lange). For every computable closed S, there is a low homogeneous model with type spectrum S.

The Homogeneous Model Theorem and AMT II

Computability theoretic results suggest that HMT behaves like AMT: d is low₂ if $\Delta_3^{0,d} = \Delta_3^0$.

The Homogeneous Model Theorem and AMT II

Computability theoretic results suggest that HMT behaves like AMT: **d** is low₂ if $\Delta_3^{0,d} = \Delta_3^0$.

Thm (Csima, Hirschfeldt, Knight, and Soare). TFAE if d $\leqslant 0'$:

- Every decidable atomic T has a **d**-decidable atomic model.
- \mathbf{d} is nonlow₂.

Thm (Lange). TFAE if $d \leq 0'$:

- For every computable closed S there is a **d**-decidable homogeneous model of T with type spectrum S.

- \mathbf{d} is nonlow₂.

These "coincidences" have recently been explained:

These "coincidences" have recently been explained:

Thm (Hirschfeldt, Lange, and Shore). $RCA_0 \vdash AMT \leftrightarrow HMT$.

Atomic models and type omitting

Thm (Millar). Let T be decidable.

Let A be a computable set of complete types of T. There is a decidable model of T omitting all nonprincipal types in A.

Let B be a computable set of nonprincipal partial types of T. There is a decidable model of T omitting all partial types in B. Thm (Millar). Let T be decidable.

Let A be a computable set of complete types of T. There is a decidable model of T omitting all nonprincipal types in A.

Let B be a computable set of nonprincipal partial types of T. There is a decidable model of T omitting all partial types in B.

Thm (Millar). There is a decidable T and a computable set of partial types C of T s.t. no decidable model of T omits all nonprincipal partial types in C.

Thm (Millar). There is a decidable T and a computable set of partial types C of T s.t. no decidable model of T omits all nonprincipal partial types in C.

Thm (Millar). There is a decidable T and a computable set of partial types C of T s.t. no decidable model of T omits all nonprincipal partial types in C.

Thm (Csima). Let T be decidable and let C be a computable set of partial types of T. If $\mathbf{0} < \mathbf{d} \leq \mathbf{0}'$ then there is a **d**-decidable model of T omitting all nonprincipal partial types in C.

Thm (Goncharov and Nurtazin; Harrington). Let T be a decidable atomic theory s.t. the types of T are uniformly computable. Then T has a decidable atomic model. **Thm (Goncharov and Nurtazin; Harrington).** Let T be a decidable atomic theory s.t. the types of T are uniformly computable. Then T has a decidable atomic model.

Thm (Goncharov and Nurtazin; Millar). There is a decidable atomic T s.t. each type of T is computable, but T has no decidable atomic model.

Thm (Goncharov and Nurtazin; Harrington). Let T be a decidable atomic theory s.t. the types of T are uniformly computable. Then T has a decidable atomic model.

Thm (Goncharov and Nurtazin; Millar). There is a decidable atomic T s.t. each type of T is computable, but T has no decidable atomic model.

Thm (Csima). Let T be a decidable atomic theory s.t. each type of T is computable, and let $0 < d \leq 0'$. Then T has a **d**-decidable atomic model.

Thm (Csima). Let T be decidable and let C be a computable set of partial types of T. If $\mathbf{0} < \mathbf{d} \leq \mathbf{0}'$ then there is a **d**-decidable model of T omitting all nonprincipal partial types in C.

Let T be a decidable atomic theory s.t. each type of T is computable, and let $0 < d \leq 0'$. Then T has a **d**-decidable atomic model.

Thm (Csima). Let T be decidable and let C be a computable set of partial types of T. If $\mathbf{0} < \mathbf{d} \leq \mathbf{0}'$ then there is a **d**-decidable model of T omitting all nonprincipal partial types in C.

Let T be a decidable atomic theory s.t. each type of T is computable, and let $0 < d \leq 0'$. Then T has a **d**-decidable atomic model.

Let T be a decidable atomic theory s.t. each type of T is computable.

There is a computable set of partial types C containing every complete type of T.

Thm (Csima). Let T be decidable and let C be a computable set of partial types of T. If $\mathbf{0} < \mathbf{d} \leq \mathbf{0}'$ then there is a **d**-decidable model of T omitting all nonprincipal partial types in C.

Let T be a decidable atomic theory s.t. each type of T is computable, and let $0 < d \leq 0'$. Then T has a **d**-decidable atomic model.

Let T be a decidable atomic theory s.t. each type of T is computable.

There is a computable set of partial types C containing every complete type of T.

Omitting C yields an atomic model of T.

Thm (Hirschfeldt). Let T be a decidable atomic theory s.t. each type of T is computable, and let d > 0. Then T has a d-decidable atomic model.

Thm (Hirschfeldt). Let T be a decidable atomic theory s.t. each type of T is computable, and let d > 0. Then T has a d-decidable atomic model.

f majorizes g if $f(n) \ge g(n)$ for all n.

d is *hyperimmune* if there is a **d**-computable g not majorized by any computable f.

Thm (Hirschfeldt). Let T be a decidable atomic theory s.t. each type of T is computable, and let d > 0. Then T has a d-decidable atomic model.

f majorizes g if $f(n) \ge g(n)$ for all n.

d is *hyperimmune* if there is a **d**-computable g not majorized by any computable f.

Thm (Hirschfeldt, Shore, and Slaman). Let T be decidable and let C be a computable set of partial types of T. If **d** is hyperimmune then there is a **d**-decidable model of T omitting all nonprincipal partial types in C.

There is a decidable T and a computable set C of partial types of T s.t. every model of T that omits C has hyperimmune degree.

OPT: Let S be a set of partial types of T. There is a model of T omitting all nonprincipal types in S.

OPT: Let S be a set of partial types of T. There is a model of T omitting all nonprincipal types in S.

HYP: For every X there is a g not majorized by any X-computable f.

OPT: Let S be a set of partial types of T. There is a model of T omitting all nonprincipal types in S.

HYP: For every X there is a g not majorized by any X-computable f.

Thm (Hirschfeldt, Shore, and Slaman). $RCA_0 \vdash OPT \leftrightarrow HYP$.

Reverse Mathematical Versions II

Partial types Γ and Δ of T are equivalent if they imply the same formulas over T.

 $(\Delta_n)_{n \in \omega}$ is a subenumeration of the partial types of \mathcal{T} if for every partial type Γ of \mathcal{T} there is an n s.t. Γ and Δ_n are equivalent.

Reverse Mathematical Versions II

Partial types Γ and Δ of T are equivalent if they imply the same formulas over T.

 $(\Delta_n)_{n \in \omega}$ is a subenumeration of the partial types of \mathcal{T} if for every partial type Γ of \mathcal{T} there is an n s.t. Γ and Δ_n are equivalent.

AST: If T is atomic and its partial types have a subenumeration, then T has an atomic model.

Reverse Mathematical Versions II

Partial types Γ and Δ of T are equivalent if they imply the same formulas over T.

 $(\Delta_n)_{n \in \omega}$ is a subenumeration of the partial types of \mathcal{T} if for every partial type Γ of \mathcal{T} there is an n s.t. Γ and Δ_n are equivalent.

AST: If T is atomic and its partial types have a subenumeration, then T has an atomic model.

Thm (Hirschfeldt, Shore, and Slaman). $RCA_0 \vdash AST \leftrightarrow \forall X \exists Y (Y \leq_T X)$.