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Some Goals

I Revealing the “fundamental combinatorics” of theorems.

I Discovering hidden relationships between theorems.

I Finding correspondences between computability theoretic notions and
combinatorial principles.

We’ll examine some of these in the context of model-theoretic principles.

The Completeness Theorem is provable in RCA0.

But what if we want to produce models with particular properties?
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Conventions and Basic Definitions I

All our theories T are countable, complete, and consistent.

All our models M are countable.

We work in a computable language.

T is decidable if it is computable.

M is decidable if its elementary diagram is computable.

In reverse mathematics, we identify M with its elementary diagram.
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Conventions and Basic Definitions II

A partial type Γ of T is a set of formulas {ψn(~x)}n∈ω consistent with T .

Γ is a (complete) type if it is maximal.

Γ is principal if there is a consistent ϕ s.t. ∀ψ ∈ Γ (T + ϕ ` ψ).

~a ∈M has type Γ if ∀ψ ∈ Γ (M � ψ(~a)).

We write ~a ≡ ~b if ~a and ~b have the same complete type.

M realizes Γ if some ~a ∈M has type Γ. Otherwise M omits Γ.

The type spectrum of M is the set of types it realizes.
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Homogeneous Models

M is homogeneous if for all ~a ≡ ~b ∈M, we have (M,~a) ∼= (M,~b).

Equivalently, M is homogeneous if for all ~a ≡ ~b ∈M and all c ∈M,
there is a d ∈M s.t. ~ac ≡ ~bd .

This equivalence requires ACA0.

Two homogeneous models with the same type spectra are isomorphic.

HOM: Every theory has a homogeneous model.
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Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma
(every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL0 over RCA0.

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and d is PA
then T has a d-decidable homogeneous model.

d is PA iff every infinite binary tree has an infinite d-computable path.



Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma
(every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL0 over RCA0.

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and d is PA
then T has a d-decidable homogeneous model.

d is PA iff every infinite binary tree has an infinite d-computable path.



Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma
(every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL0 over RCA0.

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and d is PA
then T has a d-decidable homogeneous model.

d is PA iff every infinite binary tree has an infinite d-computable path.



Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma
(every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL0 over RCA0.

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and d is PA
then T has a d-decidable homogeneous model.

d is PA iff every infinite binary tree has an infinite d-computable path.



Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma
(every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL0 over RCA0.

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and d is PA
then T has a d-decidable homogeneous model.

d is PA iff every infinite binary tree has an infinite d-computable path.



Building Homogeneous Models

One method: elementary chains / iterated extensions

This is effective except for applications of Lindenbaum’s Lemma
(every consistent set of sentences can be extended to a complete theory).

Lindenbaum’s Lemma is equivalent to WKL0 over RCA0.

Another method: Scott sets of nonstandard models of Peano Arithmetic

A Turing degree is PA if it is the degree of a nonstandard model of PA.

Thm (Macintyre and Marker). If T is decidable and d is PA
then T has a d-decidable homogeneous model.

d is PA iff every infinite binary tree has an infinite d-computable path.



A Reversal

Thm (Macintyre and Marker). WKL0 ` HOM.

Thm (Csima, Harizanov, Hirschfeldt, and Soare). There is a decidable
T s.t. any homogeneous model of T has PA degree.

Thm (Lange). RCA0 ` HOM → WKL0.
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Atomic Models

M is atomic if every type it realizes is principal.

M is prime if it can be elementarily embedded in every model of T .

M is atomic iff M is prime.

If M is atomic then it is homogeneous.

Any two atomic models of T are isomorphic.

T is atomic if every formula consistent with T can be extended to a
principal type of T .

T has an atomic model iff T is atomic.
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The Atomic Model Theorem I

RCA0 ` If T has an atomic model then T is atomic.

AMT: If T is atomic then T has an atomic model.

ACA0 ` AMT.

Thm (Goncharov and Nurtazin; Millar). RCA0 0 AMT.

Thm (Hirschfeldt, Shore, and Slaman). AMT and WKL0 are
incomparable over RCA0.
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The Atomic Model Theorem II

A linear order is stable if every element has either finitely many
predecessors or finitely many successors.

(S)ADS: Every infinite (stable) linear order has an infinite ascending or
descending sequence.

SADS is strictly weaker than ADS, which is strictly weaker than RT2
2.

Thm (Hirschfeldt, Shore, and Slaman). RCA0 + SADS ` AMT.
RCA0 + AMT 0 SADS.
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The Homogeneous Model Theorem

Goncharov gave closure conditions on a set of types S of T necessary and
sufficient for S to be the type spectrum of a homogeneous model of T .

I Closure under permutations of variables.

I Closure under subtypes.

I Closure under unions of types on disjoint sets of variables.

I Closure under type / type amalgamation.

I Closure under type / formula amalgamation.

If S satisfies these conditions, we say it is closed.

HMT: If S is closed then there is a homogeneous model of T with type
spectrum S .
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The Homogeneous Model Theorem and AMT I

Computability theoretic results suggest that HMT behaves like AMT:

d is low if ∆0,d
2 = ∆0

2.

Thm (Csima). Every decidable atomic T has a low atomic model.

Thm (Lange). For every computable closed S , there is a low
homogeneous model with type spectrum S .
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The Homogeneous Model Theorem and AMT II

Computability theoretic results suggest that HMT behaves like AMT:

d is low2 if ∆0,d
3 = ∆0

3.

Thm (Csima, Hirschfeldt, Knight, and Soare). TFAE if d 6 0′:

- Every decidable atomic T has a d-decidable atomic model.

- d is nonlow2.

Thm (Lange). TFAE if d 6 0′:

- For every computable closed S there is a d-decidable homogeneous
model of T with type spectrum S .

- d is nonlow2.
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The Homogeneous Model Theorem and AMT III

These “coincidences” have recently been explained:

Thm (Hirschfeldt, Lange, and Shore). RCA0 ` AMT ↔ HMT.
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Omitting Partial Types

Thm (Millar). Let T be decidable.

Let A be a computable set of complete types of T .
There is a decidable model of T omitting all nonprincipal types in A.

Let B be a computable set of nonprincipal partial types of T .
There is a decidable model of T omitting all partial types in B.

Thm (Millar). There is a decidable T and a computable set of partial
types C of T s.t. no decidable model of T omits all nonprincipal partial
types in C .
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Thm (Millar). There is a decidable T and a computable set of partial
types C of T s.t. no decidable model of T omits all nonprincipal partial
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Thm (Csima). Let T be decidable and let C be a computable set of
partial types of T . If 0 < d 6 0′ then there is a d-decidable model of T
omitting all nonprincipal partial types in C .
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AMT With Computable Types

Thm (Goncharov and Nurtazin; Harrington). Let T be a decidable
atomic theory s.t. the types of T are uniformly computable.
Then T has a decidable atomic model.

Thm (Goncharov and Nurtazin; Millar). There is a decidable atomic T
s.t. each type of T is computable, but T has no decidable atomic model.

Thm (Csima). Let T be a decidable atomic theory s.t. each type of T is
computable, and let 0 < d 6 0′. Then T has a d-decidable atomic model.
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Thm (Csima). Let T be decidable and let C be a computable set of
partial types of T . If 0 < d 6 0′ then there is a d-decidable model of T
omitting all nonprincipal partial types in C .

Let T be a decidable atomic theory s.t. each type of T is computable, and
let 0 < d 6 0′. Then T has a d-decidable atomic model.
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There is a computable set of partial types C containing every complete
type of T .

Omitting C yields an atomic model of T .
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Omitting Types and Atomic Models

Thm (Hirschfeldt). Let T be a decidable atomic theory s.t. each type of
T is computable, and let d > 0. Then T has a d-decidable atomic model.

f majorizes g if f (n) > g(n) for all n.

d is hyperimmune if there is a d-computable g not majorized by any
computable f .

Thm (Hirschfeldt, Shore, and Slaman). Let T be decidable and let C
be a computable set of partial types of T . If d is hyperimmune then there
is a d-decidable model of T omitting all nonprincipal partial types in C .

There is a decidable T and a computable set C of partial types of T s.t.
every model of T that omits C has hyperimmune degree.
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Reverse Mathematical Versions

OPT: Let S be a set of partial types of T . There is a model of T
omitting all nonprincipal types in S .

HYP: For every X there is a g not majorized by any X -computable f .

Thm (Hirschfeldt, Shore, and Slaman). RCA0 ` OPT ↔ HYP.
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Reverse Mathematical Versions II

Partial types Γ and ∆ of T are equivalent if they imply the same formulas
over T .

(∆n)n∈ω is a subenumeration of the partial types of T if for every partial
type Γ of T there is an n s.t. Γ and ∆n are equivalent.

AST: If T is atomic and its partial types have a subenumeration, then T
has an atomic model.

Thm (Hirschfeldt, Shore, and Slaman). RCA0 `AST↔∀X∃Y (Y 
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