

Last time: We saw that the models W_j from the K^c construction are countably iterable as long as they are all domestic.

It was also said that we may not use a reflection argument to see that they are in fact fully iterable; actually, there are counterexamples.

Today, I first want to give an example of an application where full iterability would be needed. We'll then study the problem of the full iterability of K^c, which will lead to the core model induction technique.
the pcf "conjecture" states that for a set a of regular cardinals,

$$\text{pcf}(a) = a^-. $$

It has to be wrong if $2^{\aleph_0} < \aleph_\omega$, but $\aleph_\omega > \aleph_\omega$.

We get models with Woodin cardinals from this hypothesis, which is not known to be consistent.

However, we also get models with Woodin cardinals from a hypothesis which Gitik has shown to be consistent and which is related to the pcf "conjecture."
Theorem (Gitik, Sch, Shelah)

Let \(\kappa \) be a singular cardinal of uncountable cofinality. Suppose

\[\{ \alpha < \kappa : 2^\alpha = \alpha^+ \} \]

to be stationary and co-stationary.

Then for every \(n \leq \omega \), there is an inner model with \(n \) Woodin cardinals.

I do not want to sketch the proof of this theorem, but I want to show you an aspect of the proof in order to convince you that full iterability of inner models is an issue.

The above hypothesis formulates a strong version of the failure of SCH.
The hypothesis of the theorem gives many increasing sequences

\[(\kappa_i : i < \omega)\]

of singular cardinals below \(\kappa\) s.t.

\[\text{cf}\left(\prod_{i} \kappa_i^+\right) > \left(\sup_{i} \kappa_i\right)^+ = \gamma^+\]

The plan is to show that for \(W = \kappa^c\) (or \(W = \) a better model than \(\kappa^c\)) s.t.

\[W \models \text{GCH},\]

\[
\{ f \upharpoonright \{\kappa_i : i < \omega\} : f \in W \}
\]

\[f : \lambda \to \gamma\]

is cofinal in \(\prod_{i} \kappa_i^+\).

This will certainly yield a contradiction.
The key idea is to use a covering argument.

Let \(f \in \prod_{i < \omega} \kappa_i^+ \); \(f: \omega \to \lambda \), \(f(i) < \kappa_i^+ \)
for \(i < \omega \).

Pick \(\pi: \bar{W} \to W \) s.t. \(\bar{W} \) is transitive,
\(\text{Card}(\bar{W}) = \aleph_1 \), \(f(i) \in \text{ran}(\pi) \) for \(i < \omega \).

The plan is to argue that there be some \(\mathcal{U} \triangleq W \) s.t. for all but finitely many \(i < \omega \),
\[
\text{ran}(\pi) \cap \kappa_i^+ \subseteq \text{Hull}_{\mathcal{U}}(\kappa_i \cup \{p\}),
\]
some fixed \(p \in \mathcal{U} \).
We may then set

$$\tilde{f}(x) = \sup \left(\text{Hull}^u (\mathcal{W} \cup \{p\}) \cap x + \text{K} \right),$$

where $x < \lambda$.

Then $\tilde{f} : \lambda \rightarrow \lambda$, $\tilde{f} \in W$, and because

$$\text{K}^+_i W = \text{K}^+_i$$

for all $i \in \omega$ (as all the K_i are singular) and

$$f(i) \in \text{ran}(f) \cap K^+_i \subseteq \text{Hull}^u (K_i \cup \{p\}),$$

we get that

$$f(i) < \tilde{f}(K_i).$$

i.e., $\tilde{f} \nabla \{K_i : i \in \omega\}$ majorizes f, and

$$\tilde{f} \in W.$$ \tilde{f} is thus as desired.

Where do we get such an W from?
The plan for this is:

- Confining \(\bar{W} \), \(W \).

- Show that (\(\pi \) may have been chosen, in such a way that) \(\bar{W} \) does not move in the coiteration.

- The coiteration produces a \(\bar{\mu} \) s.t.

 \[
 \pi^{-1}(\kappa_i^+) \subseteq \text{Hull} \bar{\mu}(\bar{\kappa}_i \cup \{\bar{p}\}), \text{ some } \bar{p}.
 \]

- Then, setting \(\mu = \text{Ult}(\bar{\mu}; \pi \upharpoonright \bar{\lambda}) \),

 \[
 \text{ran}(\pi) \cap \kappa_i^+ \subseteq \text{Hull} \mu(\kappa_i \cup \{\rho\}),
 \]

 where \(\rho = \pi_{\bar{\mu}}(\bar{p}) \).
Point is: We obviously need more than countable iterability of W to show that this works.

We in fact need the full iterability of W!

On the other hand, the iterability proof for (the models from the) K^c construction really just produces ctable iterability. We have to use a reflection argument to show ctable iterability \Rightarrow full iterability.

In order for this reflection argument to work out, we need that V is closed under operators which certify branches through iteration trees.
Let the premouse M be ctblg, iterable.

How would you try proving that M is fully iterable?

(1) We need a candidate for a full iteration strategy for M. Call it Σ.

(2) We need to argue: if the iteration $\mathcal{I} = (\mathcal{M}_\alpha, \mathcal{P}_\alpha : \beta \leq \gamma \alpha < \gamma)$ is according to Σ, then all the models from \mathcal{I} are transitive, and if γ is a limit ordinal, then $\Sigma(\mathcal{I}) \vdash$.

We need to reflect a potential failure of (2) down into H_ω.
Pick $\sigma : H \to V$, H c.tble. and transitive.
Let $\langle \bar{m}, \bar{\alpha} \rangle = \sigma^{-1}(m, \bar{\alpha})$.

$$\bar{\alpha} = (\bar{m}_\alpha, \bar{\nu}_\beta : \beta \leq \bar{\alpha} < \bar{\eta})$$

is a c.tble. iteration of \bar{m}.

Suppose \bar{T} is according to Σ, all the models are transitive, \bar{f} (and hence \bar{f}) is a limit ordinal, and we search for a cofinal branch thru \bar{T} (which is according to Σ).

Let $\bar{\Sigma}$ be an iteration strategy for \bar{m} w.r.t. countable iterations of \bar{m}. So

$$\bar{\Sigma}(\bar{T}) \Downarrow, \text{ say } = \bar{b}.$$
Say there is an initial segment

\[Q \trianglelefteq M^e_b = \text{the direct limit model according to } b \]

which can be identified in \(H \), i.e., is an element of \(H \) and is definable in \(H \).

Then by absoluteness, for the right \(\theta \),

\[H \models \text{``there is a cofinal branch } b' \text{ such that } \]
\[\exists \overline{I} \text{ s.t. } Q \trianglelefteq M^e_{b'} \]

and if \(Q \) identifies \(b \), then \(b' = b \in H \) by homogeneity and \(b \) is definable in \(H \) via \(Q \).

But then \(\sigma(b) \) is a perfect candidate for \(\Sigma(e) \).
Example: If there is no inner model with a Woodin cardinal and \(\mathcal{U} \) has no definable Woodin cardinal, then this argument works with

\[Q = \text{the least initial segment of } L[\mathcal{U}(\mathcal{I})] \]

which kills the Woodinness of \(\delta(\mathcal{I}) \).

(Here, \(\delta(\mathcal{I}) = \sup \text{ of the indices of the extenders used in } \mathcal{I} \); \(\mathcal{U}(\mathcal{I}) \) = the "common part model" of \(\mathcal{I} \); \(\forall \mathcal{V} \subseteq \mathcal{U}(\mathcal{I}) \) iff \(\forall \mathcal{V} \subseteq \mathcal{U}_\alpha \) for a tail end of \(\alpha \)'s, while \(\mathcal{U}_\alpha \) is the \(\alpha \)-th model from the iteration \(\mathcal{I} \).)

On the other hand, under unfavorable circumstances, models with Woodin cardinals need not be fully iterable.
Theorem (Woodin). Let m be a fully iterable premouse, $m \models \text{“} \delta \text{ is a Woodin cardinal.} \text{”}$

There is then a poset $P \in H^m_{\delta^+}$ which has the δ-c.c. in m s.t. for every set A of ordinals whatever there is some iterate

$$i : m \longrightarrow m^*$$

s.t. A is $i(P)$-generic over m^*.

Now let $M_\delta = L[E]$ be the least premouse with a Woodin cardinal, δ. Basically, $E \subseteq \delta$.

Suppose that

$$M_\delta \models \text{“I'm fully iterable.”}$$
Let $W =$ the iterate of M_1 obtained by hitting the least measure of M_1 (and its images) δ^+ times, and let W^* be a further iterate s.t. E is generic over W^*. Then

$$W^*[E] = \bigcap E = M_1.$$

$j_i \in M_1$, so $ji \uparrow \delta^+$ witnesses that in M_1,

$$\operatorname{cf}(ji(\delta + M_1)) = \operatorname{cf}(ji(\delta + W^*)) = \operatorname{cf}(ji(\delta + M_1)) = \delta^+.$$

Contradiction!
There is hence nothing that might guarantee in general that \(K^c \), albeit always being countably iterable, is fully iterable.

As in the example of \(M^c \), it might just be that \(V \) is not saturated by the relevant \(\mathcal{Q} \)-structures which identify cofinal branches thru iterations of \(K^c \).

The idea of the core model induction, first developed by H. Woodin and later extended by J. Steel and others, is to inductively show \(V \) is closed under the relevant \(\mathcal{Q} \)-structures and always work in local universes in which the \(K^c \) produced there is either fully iterable or provides the “next \(\mathcal{Q} \)-structure.”
Let us discuss this in the case of the above example in which κ is a singular cardinal, $\text{cf}(\kappa) > \omega$, and
\[\{ \alpha < \kappa : 2^{\alpha} = \alpha^+ \} \]
is stationary and costationary.

We may then first show that every set in H_κ has a $\#$.

Now suppose that for every set x in H_κ, $M^\#_n(x)$ exists, but $M^\#_{n+1}(x)$ does not exist, some $x \in H_\kappa$.

Say $x_0 = \varnothing$.

Here, $M^\#_n(x) =$ the least premouse over x which has a measure above n Woodin cardinals and which is club-iterable.
In this situation, let \(I \) be an \textit{situation of} \(K^c \), say, when \(I \) has limit length \(< \kappa \), and \(I \) lives on \(K^c \langle \lambda \rangle \), some \(\lambda < \kappa \).

Let \(m(I) \) be the common part model of \(I \), and let \(\delta(I) \) be its height.

Then (an initial segment of) \(M^+ \rangle \langle m(I) \rangle \) will serve as the \(Q \)-structure which identifies the correct branch thru \(I \).

Uses:

\textbf{Theorem} (Martin, Steel) If \(b \neq c \) are cofinal branches thru \(I \), then \(\delta(I) \) is Woodin in \(\text{wftp}(M^I_b) \cap \text{wftp}(M^I_c) \).
The reflection argument from above then thus shows that K^e / κ is κ-c.c.

We may then isolate a model W, namely the true core model K of height κ, for which the covering argument which we discussed above can be made work.

We'll have

$$K \prec X \prec K^e / \kappa$$

for an appropriate hull X. K will have the following property:

If $\sigma : W \to K$,

then either W loses the covering against K (i.e., is strictly weaker than K), or else $W = K$. (Rigidity)
Other properties of K:

Forcing absoluteness: $K^P = K$ for all $P \in \mathcal{P}_\kappa$.

Weak covering: $\mathfrak{c}(\lambda^+\kappa) > \mathfrak{a}$ whenever $\lambda^2 \leq \lambda < \kappa$.

This is a theorem of Mitchell, Schimmerling, and Steel.

Local definability: $K|\lambda$ may be defined inside H_λ, where $2^\lambda < \lambda < \kappa$.

K inherits the full iterability from K^c.
Thru results of Martin, Steel, and Woodin, the above argument shows \textbf{Projective Determinacy}, i.e., that all sets of reals which are in J_2^{IR} are determined.

[$J_1^{\text{IR}} = V_{\omega+1}$, etc.]

The core model induction now uses L^{IR} as its guide in that:

We show inductively that (an initial segment of) V is closed under mice which correspond to the determinacy of all sets of reals in J_α^{IR}, $\alpha \geq 2$.

Either the “next” mouse with a Woodin cardinal exists, or else we may isolate K to derive a contradiction.
The mouse closure will serve as a basis for the models we are about to produce to have terms in them which capture a given set of reals of the next complexity class; we'll use:

Definition. Let \(M \) be a countable mouse with a Woodin cardinal, \(\delta \). Let \(A \in R \), let \(\tau \in M^{\text{Col}(\omega, \delta)} \), and let \(\Sigma \) be the iteration strategy for \(M \). We then say that \(\tau, \Sigma \) capture \(A \) if for all

\[
i: M \rightarrow M^* \quad (M^* \text{ still \\
\text{closed.})}
\]

according to \(\Sigma \) and for all \(g \in \text{Col}(\omega, i(\delta)) \)-generic over \(M^* \), \(g \in V \),

\[
A \cap M^*[\bar{g}] = \tau^g.
\]
In the above situation,

\[A = \bigcup \{ \tau^g : g \in V \text{ generic over } M \} \]

(We denote \(M^* \) of \(M \))

Theorem (Neeman) Let \(M, A, \tau, \Sigma \) be as above. Then \(A \) is determined.

The core model induction has various cases.

Notice:

"There is a set of reals which is not determined" is \(\Sigma_1 \),

if we count \(\forall x \in \mathbb{R} \) and \(\exists x \in \mathbb{R} \) as bounded quantification.

Therefore, if \(\alpha \) is least s.t. \(J_\alpha \not\models AD \) (\(AD = \) the axiom of determinacy), then \(\alpha \) begins a \(\Sigma_1 \)-gap.
Definition. Let $\alpha \leq \beta$. Then $[\alpha, \beta)$ is a Σ_1-gap (in $L(\mathbb{R})$) iff

- $J_\alpha(\mathbb{R}) \subseteq^* \Sigma_1 \frac{J_\beta(\mathbb{R})}{\beta}$

- $J_\alpha(\mathbb{R}) \nsubseteq^* \Sigma_1 \frac{J_\beta(\mathbb{R})}{\beta}$ for all $\gamma < \alpha$

- $J_\beta(\mathbb{R}) \nsubseteq^* \Sigma_1 \frac{J_\alpha(\mathbb{R})}{\alpha}$ for all $\beta > \alpha$.

The Σ_1-gaps partition the class of all ordinals.

The core model induction works by induction on the gaps.

Main cases:

1. α is inadmissible and the previous gap, if there is one, is not strong.

2. α ends a weak proper gap or it begins one, and there is a previous gap which is strong.
In the inadmissible gap case we can proceed as discussed above.

In the weak gap case we have to construct a new kind of premise, hybrids. Say \([\beta, \alpha)\), \(\beta < \alpha\), is the weak gap.

Let \(m < w\) be least such that a new set of reals, \(A_i\), is \(\Sigma^1_m(1^\infty)\) - definable.

Then \(A = \bigcup_{n < w} A_n\), where \(A_n \in \mathcal{J}_\alpha(1^\infty) V_n\).

The inductive hypothesis will give us a "suitable" premouse with an iteration strategy with condensation, i.e., a little mouse \(W\) with an iteration strategy \(\Sigma\), \(W \models \sigma \text{ is Woodin}\), and terms \(\tau_n\), \(n < w\), such that \(\tau_n, \Sigma\) capture \(A_n \in V_n\),
The hybrids look like ordinary mice except for that while we closed under the... before we will now in addition feed in information about how to iterate \mathcal{W} according to Σ.

Hybrid premise: $\mathcal{J}_l ([\mathcal{W}, \mathcal{E}, \Sigma])$.

As Σ satisfies condensation, we may do a κ^c, Σ construction in much the same way as we did a κ^c construction before.

Once we found a hybrid mouse with a Woodin cardinal which has an iteration strategy Γ which moves Σ correctly, we may use Neeman’s theorem to deduce A is determinate.
Let $M = \mathcal{Y} \mathcal{H} \nu, \xi, \Sigma$ be a hybrid mouse with a Woodin cardinal, ξ.

We may define a term $\tau \in M\mathcal{C}_\xi(\nu, \xi)$ in such a way that for $x \in \mathcal{R}_n M\mathcal{C}_\xi(\nu, \xi)$,

$\tau \in \tau$ iff

if x is made generic over an iterate of ν using Σ, then x is in the interpretation of the image of one τ, new.

τ will then capture A.

We need that M be iterable in a way that Σ is moved correctly, and that Σ, as given to M, will extend to Σ, restricted to $M\mathcal{C}_\xi(\nu, \xi)$, in a definable way.
Applications of the core model induction:

Theorem (Woodin) If there is an ω_1-dense ideal on ω_1, then $AD^{L(\mathbb{R})}$ holds.

Theorem (Steel) If PFA holds, then $AD^{L(\mathbb{R})}$ holds.

(The stacking technique today gives a stronger result, but it might be that an extension of the core model induction produces a stronger result than the stacking technique.)

Theorem (Busche, Schindler) If every uncountable cardinal is singular, then $AD^{L(\mathbb{R})}$ holds.
Extensions of the core model induction technique beyond $L(\mathcal{R})$:

Theorem (Ketelaarsid) Suppose $CH +$ there is an ω_1-dense ideal on $\omega_1 + \varepsilon$. There is within a model of $AD + \theta \lt \theta$ of the form $L(\mathcal{R}, A)$, some $A \subset \mathcal{R}$.

The set A in this theorem is actually an iteration strategy for a "full" mouse producing HOD/θ of the maximal model of $AD + \theta = \theta$.

More generally:

Theorem (Sargsyan) Suppose $CH +$ there is an ω_1-dense ideal on $\omega_1 + \varepsilon$. There is then a model of $AD + \theta$ is regular.

By work of Woodin, this gives an equiconsistency.
The proof of the Ketchersid-Sargsyan result uses an extension of the core model induction technique beyond $L(\mathcal{R})$.

Given a model $L(\mathcal{R}, \Gamma)$ of $\text{AD} + \Theta_\alpha^\mathcal{V} = \Theta$, one starts out by analyzing its HOD / Θ and representing it as a direct limit of a countable hod-mouse \mathcal{N}. One then finds an iteration strategy Σ for \mathcal{N} which cannot be in $L(\mathcal{R}, \Gamma)$; using condensation for Σ, one runs a core model induction to show AD in $L(\mathcal{R}, \Sigma)$. But $L(\mathcal{R}, \Gamma)$ was taken to be maximal, and therefore $\text{AD} + \Theta_\alpha^\mathcal{V} < \Theta$ holds true in $L(\mathcal{R}, \Sigma)$.
Questions.

(1) Suppose \(\kappa \) is a limit cardinal with
\(\omega < \text{cf}(\kappa) < \kappa \), and
\[\{ \alpha < \kappa : 2^\alpha = \alpha^+ \} \]
is stationary and costationary in \(\kappa \).
Does AD hold in \(L(\mathbb{R}) \)?
Is there a model of \(AD + \Theta \) regular?

(2) Suppose that every uncountable cardinal is singular.

Is there a model of \(AD + \Theta \) regular?

How do you go beyond \(AD + \Theta \) regular from these hypotheses?
Further questions:

(3) Let κ be a singular strong limit cardinal, and suppose \square_κ fails. Is there a model of $AD + \theta$ regular?

(4) Suppose PFA holds. Is there a model of $AD + \theta$ regular? Is there an inner model with a supercompact cardinal?

(5) Suppose κ is strongly compact. Is there an inner model with a supercompact cardinal?

(4) + (5) are certainly holy grails of inner model theory.