Exploring Singular Cardinal Combinatorics

Dima Sinapova
UCI

August 1, 2009
Definition
The Singular Cardinal Hypothesis (SCH) states that if κ is singular and $2^{\text{cf}(\kappa)} < \kappa$, then $\kappa^{\text{cf}(\kappa)} = \kappa^+$.
Definition
The Singular Cardinal Hypothesis (SCH) states that if κ is singular and $2^{\text{cf}(\kappa)} < \kappa$, then $\kappa^{\text{cf}(\kappa)} = \kappa^+.$

Theorem
(Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which \aleph_ω is strong limit and $2^{\aleph_\omega} = \aleph_{\omega + 2}.$
Definition
The Singular Cardinal Hypothesis (SCH) states that if κ is singular and $2^{\text{cf}(\kappa)} < \kappa$, then $\kappa^{\text{cf}(\kappa)} = \kappa^+$.

Theorem
(Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which \aleph_ω is strong limit and $2^{\aleph_\omega} = \aleph_{\omega+2}$.

Gitik and Woodin significantly reduced the large cardinal hypothesis to a measurable cardinal κ of Mitchell order κ^{++}. This hypothesis was shown to be optimal by Gitik and Mitchell using core model theory.
Square principles

- These principles were isolated by Jensen in his fine structure analysis of L.
Square principles

- These principles were isolated by Jensen in his fine structure analysis of L.
- □κ states that there is a coherent sequence of closed and unbounded sets singularizing ordinals $\alpha < \kappa^+$.
- $\Box^*\kappa$ is a weakening which allows up to κ guesses for each club.
Introduction

Main theorem

The construction

The scales

Square principles

- These principles were isolated by Jensen in his fine structure analysis of L.

- \square_κ states that there is a coherent sequence of closed and unbounded sets singularizing ordinals $\alpha < \kappa^+$.

- \square^*_κ is a weakening which allows up to κ guesses for each club.
These principles were isolated by Jensen in his fine structure analysis of L.

\square^κ states that there is a coherent sequence of closed and unbounded sets singularizing ordinals $\alpha < \kappa^+$.

$\square^*\kappa$ is a weakening which allows up to κ guesses for each club.

The Approachability Property, AP_κ.

- States that almost all points in κ^+ are "approachable"
- Approachability can be viewed as a weak square-like principle and is closely connected with the concept of scales.
Shelah’s theorem and PCF

Theorem
(Shelah) If $2^{\aleph_n} < \aleph_\omega$ for every $n < \omega$, then $2^{\aleph_\omega} < \aleph_{\omega_4}$.

- A famous conjecture is that the subscript 4 can be replaced by 1.
Shelah’s theorem and PCF

Theorem

(Shelah) If $2^{\aleph_n} < \aleph_\omega$ for every $n < \omega$, then $2^{\aleph_\omega} < \aleph_{\omega_4}$.

- A famous conjecture is that the subscript 4 can be replaced by 1.

- The body of techniques used by Shelah is called PCF theory.

- A central concept in PCF theory is the notion of scales.
Let κ be a singular cardinal and $\kappa = \sup_{\eta < \text{cf}(\kappa)} \kappa \eta$. For f and g in $\prod_{\eta < \text{cf}(\kappa)} \kappa \eta$, we say that $f <^* g$ if $f(\eta) < g(\eta)$ for all large η.
Scales

Let κ be a singular cardinal and $\kappa = \sup_{\eta < \text{cf}(\kappa)} \kappa_\eta$. For f and g in $\prod_{\eta < \text{cf}(\kappa)} \kappa_\eta$, we say that $f <^* g$ if $f(\eta) < g(\eta)$ for all large η.

A scale of length κ^+ is a sequence of functions $\langle f_\alpha \mid \alpha < \kappa^+ \rangle$ from $\prod_{\eta < \text{cf}(\kappa)} \kappa_\eta$ which is increasing and cofinal with respect to $<^*$.

"Scales"
Let κ be a singular cardinal and $\kappa = \sup_{\eta < \text{cf}(\kappa)} \kappa \eta$. For f and g in $\prod_{\eta < \text{cf}(\kappa)} \kappa \eta$, we say that $f <^* g$ if $f(\eta) < g(\eta)$ for all large η.

A scale of length κ^+ is a sequence of functions $\langle f_{\alpha} \mid \alpha < \kappa^+ \rangle$ from $\prod_{\eta < \text{cf}(\kappa)} \kappa \eta$ which is increasing and cofinal with respect to $<^*$.

A point $\gamma < \kappa^+$ of cofinality between $\text{cf}(\kappa)$ and κ is a good point iff there exists an $A \subseteq \gamma$, unbounded in γ such that $\langle f_{\alpha}(\eta) \mid \alpha \in A \rangle$ is strictly increasing for all large η. If A is club in γ, then γ is a very good point.
Let κ be a singular cardinal and $\kappa = \sup_{\eta < \text{cf}(\kappa)} \kappa_\eta$. For f and g in $\prod_{\eta < \text{cf}(\kappa)} \kappa_\eta$, we say that $f <^* g$ if $f(\eta) < g(\eta)$ for all large η.

A *scale of length* κ^+ is a sequence of functions $\langle f_\alpha \mid \alpha < \kappa^+ \rangle$ from $\prod_{\eta < \text{cf}(\kappa)} \kappa_\eta$ which is increasing and cofinal with respect to $<^*$.

A point $\gamma < \kappa^+$ of cofinality between $\text{cf}(\kappa)$ and κ is a *good point* iff there exists an $A \subseteq \gamma$, unbounded in γ such that $\langle f_\alpha(\eta) \mid \alpha \in A \rangle$ is strictly increasing for all large η. If A is club in γ, then γ is a *very good point*.

A scale is *(very)* good iff modulo the club filter on κ^+, almost every point of cofinality between $\text{cf}(\kappa)$ and κ is (very) good.
Combinatorial properties and some relative consistency results:

1. $\square \rightarrow \square^* \rightarrow AP \rightarrow$ all scales are good.
Combinatorial properties and some relative consistency results:

1. $\square \rightarrow \square^* \rightarrow AP \rightarrow$ all scales are good.

2. There are no good scales above a supercompact. I.e. if κ is supercompact, $\text{cf}(\nu) < \kappa < \nu$, there are no good scales at ν.
Combinatorial properties and some relative consistency results:

1. $\Box \rightarrow \Box^* \rightarrow AP \rightarrow \text{all scales are good.}$
2. There are no good scales above a supercompact. I.e. if κ is supercompact, $\text{cf}(\nu) < \kappa < \nu$, there are no good scales at ν.
3. For all $\lambda < \kappa$, $\Box_{\kappa,\lambda} \rightarrow \text{VGS}_\kappa$.
Combinatorial properties and some relative consistency results:

1. \(\square \rightarrow \square^* \rightarrow AP \rightarrow \) all scales are good.
2. There are no good scales above a supercompact. I.e. if \(\kappa \) is supercompact, \(\text{cf}(\nu) < \kappa < \nu \), there are no good scales at \(\nu \).
3. For all \(\lambda < \kappa \), \(\square_{\kappa, \lambda} \rightarrow VGS_\kappa \).
4. \(\square^*_\kappa \not\rightarrow VGS_\kappa \).
Combinatorial properties and some relative consistency results:

1. $\square \rightarrow \square^* \rightarrow AP \rightarrow$ all scales are good.
2. There are no good scales above a supercompact. i.e. if κ is supercompact, $\text{cf}(\nu) < \kappa < \nu$, there are no good scales at ν.
3. For all $\lambda < \kappa$, $\square_{\kappa,\lambda} \rightarrow VGS_{\kappa}$.
4. $\square^*_\kappa \not\rightarrow VGS_{\kappa}$.
5. $VGS_{\kappa} \not\rightarrow \square^*_\kappa$.
Gitik and Sharon showed that:

1. The failure of SCH does not imply weak square
2. The existence of a very good scale does not imply weak square
Gitik and Sharon showed that:

1. The failure of SCH does not imply weak square
2. The existence of a very good scale does not imply weak square

In particular, they showed the following:

Theorem

(Gitik, Sharon) If κ is supercompact, then there is a generic extension in which $\text{cf}(\kappa) = \omega$, SCH fails at κ, VGS_κ, and $\neg\text{AP}_\kappa$.
Gitik and Sharon showed that:

1. The failure of SCH does not imply weak square
2. The existence of a very good scale does not imply weak square

In particular, they showed the following:

Theorem

(Gitik, Sharon) If κ is supercompact, then there is a generic extension in which $\text{cf}(\kappa) = \omega$, SCH fails at κ, VGS_κ, and $\neg \text{AP}_\kappa$.

Cummings and Foreman showed that the approachability property fails precisely because there is a bad scale at κ.

Gitik and Sharon pushed down this construction to make κ be \aleph_{ω^2}.
The Main Theorem

Theorem
(S) Suppose \(\kappa \) is supercompact, \(\lambda \) is a regular cardinal less than \(\kappa \), and GCH holds. Then there is a generic extension, in which:

1. \(\kappa \) becomes \(\aleph_{\lambda^2} \),
2. SCH fails at \(\kappa \),
3. there is a very good scale at \(\kappa \), and
4. there is a bad scale at \(\kappa \).
Before we sketch the proof, let us recall some relevant types of forcings:
Before we sketch the proof, let us recall some relevant types of forcings:

1. Magidor forcing adds a club set of order type λ in κ, starting with an increasing sequence $\langle U_\alpha \mid \alpha < \lambda \rangle$ of normal measures on κ.
Before we sketch the proof, let us recall some relevant types of forcings:

1. Magidor forcing adds a club set of order type λ in κ, starting with an increasing sequence $\langle U_\alpha \mid \alpha < \lambda \rangle$ of normal measures on κ.

2. Supercompact Prikry forcing adds an increasing ω-sequence of sets $x_n \in (\mathcal{P}_\kappa(\eta))^V$ with $\eta = \bigcup_n x_n$, starting form a supercompactness measure U on κ.
Before we sketch the proof, let us recall some relevant types of forcings:

1. Magidor forcing adds a club set of order type λ in κ, starting with an increasing sequence $\langle U_\alpha \mid \alpha < \lambda \rangle$ of normal measures on κ.

2. Supercompact Prikry forcing adds an increasing ω-sequence of sets $x_n \in (\mathcal{P}_\kappa(\eta))^V$ with $\eta = \bigcup_n x_n$, starting form a supercompactness measure U on κ.

3. Gitik-Sharon forcing adds an increasing ω-sequence of sets $x_n \in (\mathcal{P}_\kappa(\kappa^+))^V$ with $\kappa^+ \omega = \bigcup_n x_n$, starting from a sequence $\langle U_n \mid n < \omega \rangle$ of supercompactness measures on $\mathcal{P}_\kappa(\kappa^+)$.
Here we start from an increasing sequence $\langle U_\alpha \mid \alpha < \lambda \rangle$ of supercompactness measures on $\mathcal{P}_{\kappa}(\kappa^{+\alpha})$ and add an increasing and continuous λ-sequence of sets $x_\alpha \in \mathcal{P}_{\kappa}(\kappa^{+\alpha})$, for $\alpha < \lambda$ such that $\kappa^{+\lambda} = \bigcup_{\alpha < \lambda} x_\alpha$.
Here we start from an increasing sequence \(\langle U_\alpha \mid \alpha < \lambda \rangle \) of supercompactness measures on \(P_\kappa(\kappa^{+\alpha}) \) and add an increasing and continuous \(\lambda \)-sequence of sets \(x_\alpha \in P_\kappa(\kappa^{+\alpha}) \), for \(\alpha < \lambda \) such that \(\kappa^{+\lambda} = \bigcup_{\alpha<\lambda} x_\alpha \).

In order to collapse cardinals, we need a sequence \(\langle K_\alpha \mid \alpha < \lambda \rangle \) where each \(K_\alpha \) is \(\text{Ult}_{U_\alpha} \)-generic for \(\text{Col}(\kappa^{+\lambda+2}, < j_\alpha(\kappa)) \).
More precisely, we prepare the ground model so that:

\[\text{\(2^{\kappa} = \kappa^+ + \lambda + 2\)} \]

\[\langle U_\alpha \mid \alpha < \lambda \rangle \text{ is a Mitchell-order increasing sequence where each } U_\alpha \text{ is a supercompactness measure on } P_{\kappa}(\kappa^+ + \alpha) \]

\[\langle K_\alpha \mid \alpha < \lambda \rangle \text{ is such that each } K_\alpha \text{ is } \text{Ult}_{U_\alpha}\text{-generic for } \text{Col}(\kappa^+ + \lambda + 2, < j_\alpha(\kappa^+)) \].
More precisely, we prepare the ground model so that:

\[2^\kappa = \kappa^++\lambda+2 \]
More precisely, we prepare the ground model so that:

- $2^{\kappa} = \kappa + \lambda + 2$
- $\langle U_\alpha \mid \alpha < \lambda \rangle$ is a Mitchell-order increasing sequence where each U_α is a supercompactness measure on $\mathcal{P}_\kappa(\kappa^{+\alpha})$
More precisely, we prepare the ground model so that:

- $2^\kappa = \kappa^+ + \lambda + 2$
- $\langle U_\alpha \mid \alpha < \lambda \rangle$ is a Mitchell-order increasing sequence where each U_α is a supercompactness measure on $\mathcal{P}_\kappa(\kappa^+)$
- $\langle K_\alpha \mid \alpha < \lambda \rangle$ is such that each K_α is Ult_{U_α}-generic for $Col(\kappa^+ + \lambda + 2, < j_\alpha(\kappa))$.
Conditions are of the form \(p = \langle g, f, H, F \rangle \), where:

\[\text{dom}(g) = \text{dom}(f) \text{ is a finite subset of } \lambda\]

\[\forall \alpha \in \text{dom}(g), g(\alpha) \in P_\kappa(\kappa + \alpha), \text{ and } g \text{ is strictly increasing, i.e. for } \alpha < \beta, \text{ in } \text{dom}(g), \]

\[g(\alpha) \subset g(\beta) \quad \otimes (g(\alpha) < \kappa < g(\beta) = \kappa \cap g(\beta)).\]

\[\forall \alpha \in \text{dom}(g), f(\alpha) \in \text{Col}(\kappa + \lambda + 2g(\alpha), < \kappa), \text{ where } \beta = \min(\text{dom}(g) \setminus \alpha + 1);\]

\[f(\max(\text{dom}(g))) \in \text{Col}(\kappa + \lambda + 2g(\alpha), < \kappa).\]
Conditions are of the form $p = \langle g, f, H, F \rangle$, where:

- $\text{dom}(g) = \text{dom}(f)$ is a finite subset of λ
Conditions are of the form $p = \langle g, f, H, F \rangle$, where:

- $\text{dom}(g) = \text{dom}(f)$ is a finite subset of λ

- for $\alpha \in \text{dom}(g)$, $g(\alpha) \in \mathcal{P}_\kappa(\kappa^{+\alpha})$, and g is strictly increasing.

i.e. for $\alpha < \beta$, in $\text{dom}(g)$, we have

- $g(\alpha) \subset g(\beta)$
- $\text{ot}(g(\alpha)) < \kappa g(\beta) = \kappa \cap g(\beta)$.

Dima Sinapova UCI Exploring Singular Cardinal Combinatorics
Conditions are of the form $p = \langle g, f, H, F \rangle$, where:

- $\text{dom}(g) = \text{dom}(f)$ is a finite subset of λ

- for $\alpha \in \text{dom}(g)$, $g(\alpha) \in P_{\kappa}(\kappa^{+\alpha})$, and g is strictly increasing i.e. for $\alpha < \beta$, in $\text{dom}(g)$, we have
 - $g(\alpha) \subset g(\beta)$
 - $\text{ot}(g(\alpha)) < \kappa_{g}(\beta) = \kappa \cap g(\beta)$.

- for each $\alpha \in \text{dom}(g)$, $f(\alpha)$ collapses cardinals between the points given by g i.e.

 1. $f(\alpha) \in Col(\kappa_{g}(\alpha)^{+\lambda+2}, \kappa_{g}(\beta)), \text{ where } \beta = \min(\text{dom}(g) \setminus \alpha + 1)$;
 2. $f(\max(\text{dom}(g))) \in Col(\kappa_{g}(\alpha)^{+\lambda+2}, \kappa)$.
Definition continued; $p = \langle g, f, H, F \rangle$, where:

- $\text{dom}(H) = \text{dom}(F) = \lambda \setminus \text{dom}(g)$.

"Measure one" above refers to the increasing sequence $\langle U_\alpha | \alpha < \lambda \rangle$ of supercompactness measures on $P_\kappa (\kappa^+ \alpha)$ and Skolem-Lowenheim collapses of these measures. The ordering is defined in the usual way.
Definition continued; \(p = \langle g, f, H, F \rangle \), where:

- \(\text{dom}(H) = \text{dom}(F) = \lambda \setminus \text{dom}(g) \).
- For \(\alpha \not\in \text{dom}(g) \), \(H(\alpha) \) is a “measure one” set of potential ways to extend \(g \).
Definition continued; $p = \langle g, f, H, F \rangle$, where:

- $\text{dom}(H) = \text{dom}(F) = \lambda \setminus \text{dom}(g)$.
- For $\alpha \notin \text{dom}(g)$, $H(\alpha)$ is a “measure one” set of potential ways to extend g.
- For $\alpha \notin \text{dom}(g)$, $F(\alpha)$ is a function with domain $H(\alpha)$ and gives the potential ways to extend f for every $y \in H(\alpha)$.

"Measure one" above refers to the increasing sequence $\langle U_\alpha | \alpha < \lambda \rangle$ of supercompactness measures on $P_\kappa(\kappa^+ + \alpha)$ and Skolem-Lowenheim collapses of these measures.
Definition continued; \(p = \langle g, f, H, F \rangle \), where:

- \(\text{dom}(H) = \text{dom}(F) = \lambda \setminus \text{dom}(g) \).
- for \(\alpha \notin \text{dom}(g) \), \(H(\alpha) \) is a “measure one” set of potential ways to extend \(g \).
- for \(\alpha \notin \text{dom}(g) \), \(F(\alpha) \) is a function with domain \(H(\alpha) \) and gives the potential ways to extend \(f \) for every \(y \in H(\alpha) \).

“Measure one” above refers to the increasing sequence \(\langle U_\alpha \mid \alpha < \lambda \rangle \) of supercompactness measures on \(P_\kappa(\kappa^{+\alpha}) \) and Skolem-Lowenheim collapses of these measures.
Definition continued; \(p = \langle g, f, H, F \rangle \), where:

- \(\text{dom}(H) = \text{dom}(F) = \lambda \setminus \text{dom}(g) \).
- for \(\alpha \not\in \text{dom}(g) \), \(H(\alpha) \) is a “measure one” set of potential ways to extend \(g \).
- for \(\alpha \not\in \text{dom}(g) \), \(F(\alpha) \) is a function with domain \(H(\alpha) \) and gives the potential ways to extend \(f \) for every \(y \in H(\alpha) \).

“Measure one” above refers to the increasing sequence \(\langle U_\alpha \mid \alpha < \lambda \rangle \) of supercompactness measures on \(\mathcal{P}_\kappa(\kappa^{+\alpha}) \) and Skolem-Lowenheim collapses of these measures.

The ordering is defined in the usual way.
Properties of the forcing

1. \mathbb{P} has the $\mu = \kappa + \lambda + 1$ chain condition.
Properties of the forcing

1. \mathbb{P} has the $\mu = \kappa^{+\lambda+1}$ chain condition.
2. \mathbb{P} has the Prikry property.
Properties of the forcing

1. \(P \) has the \(\mu = \kappa^+ + \lambda + 1 \) chain condition.
2. \(P \) has the Prikry property.
3. Let \(G \) be \(P \) generic. Let \(g^* = \bigcup_{\langle g, H \rangle \in G} g \). Then \(g^* \) is an increasing function with domain \(\lambda \) and with \(g^*(\alpha) \in \mathcal{P}_\kappa(\kappa^+ + \alpha) \) for each \(\alpha \in \text{dom}(g^*) \). Set \(x_\alpha = g^*(\alpha) \), and \(\kappa_\alpha = \kappa \cap x_\alpha \).
Properties of the forcing

1. \mathbb{P} has the $\mu = \kappa^+\lambda+1$ chain condition.
2. \mathbb{P} has the Prikry property.
3. Let G be \mathbb{P} generic. Let $g^* = \bigcup_{\langle g, H \rangle \in G} g$. Then g^* is an increasing function with domain λ and with $g^*(\alpha) \in \mathcal{P}_\kappa(\kappa^+\alpha)$ for each $\alpha \in \text{dom}(g^*)$. Set $x_\alpha = g^*(\alpha)$, and $\kappa_\alpha = \kappa \cap x_\alpha$.

4. κ and each κ_α are preserved
Properties of the forcing

1. \(P \) has the \(\mu = \kappa^{+\lambda+1} \) chain condition.
2. \(P \) has the Prikry property.
3. Let \(G \) be \(P \) generic. Let \(g^* = \bigcup_{\langle g, H \rangle \in G} g \). Then \(g^* \) is an increasing function with domain \(\lambda \) and with \(g^*(\alpha) \in \mathcal{P}_\kappa(\kappa^{+\alpha}) \) for each \(\alpha \in \text{dom}(g^*) \). Set \(x_\alpha = g^*(\alpha) \), and \(\kappa_\alpha = \kappa \cap x_\alpha \).
4. \(\kappa \) and each \(\kappa_\alpha \) are preserved
5. \((\kappa^{+\lambda})^V = \bigcup_{\alpha < \lambda} x_\alpha \)
Properties of the forcing

1. \mathbb{P} has the $\mu = \kappa^{+\lambda+1}$ chain condition.
2. \mathbb{P} has the Prikry property.
3. Let G be \mathbb{P} generic. Let $g^* = \bigcup_{\langle g, H \rangle \in G} g$. Then g^* is an increasing function with domain λ and with $g^*(\alpha) \in \mathcal{P}_\kappa(\kappa^{+\alpha})$ for each $\alpha \in \text{dom}(g^*)$. Set $x_\alpha = g^*(\alpha)$, and $\kappa_\alpha = \kappa \cap x_\alpha$.
4. κ and each κ_α are preserved
5. $(\kappa^{+\lambda})^V = \bigcup_{\alpha < \lambda} x_\alpha$
6. In $V[G]$, $\text{cf}(\kappa) = \lambda$, for each $\alpha < \lambda$, $\text{cf}((\kappa^{+\alpha+1})^V) = \lambda$, and $\mu = (\kappa^{+\lambda+1})^V = (\kappa^+)^{V[G]}$.
The Very Good Scale

We can arrange that in V there are functions $\langle F_{\xi}^\gamma \mid \gamma < \mu, \xi < \lambda \rangle$, from κ to κ, such that for all $\xi < \lambda, \gamma < \mu$, $j_{\xi}(F_{\gamma}^\xi)(\kappa) = \gamma$.
The Very Good Scale

We can arrange that in V there are functions $\langle F_\gamma^\xi \mid \gamma < \mu, \xi < \lambda \rangle$, from κ to κ, such that for all $\xi < \lambda, \gamma < \mu$, $j_{U_\xi}(F_\gamma^\xi)(\kappa) = \gamma$.

In $V[G]$, define $\langle f_\gamma \mid \gamma < \mu \rangle$ in $\prod_{\xi < \lambda} \kappa_\xi^{+\lambda+1}$, by

$$f_\gamma(\xi) = F_\gamma^\xi(\kappa_\xi)$$.
The Very Good Scale

We can arrange that in V there are functions $\langle F_\gamma^\xi \mid \gamma < \mu, \xi < \lambda \rangle$, from κ to κ, such that for all $\xi < \lambda, \gamma < \mu$, $j_U(\xi)(\kappa) = \gamma$.

In $V[G]$, define $\langle f_\gamma \mid \gamma < \mu \rangle$ in $\prod_{\xi < \lambda} \kappa_{\xi}^{+\lambda+1}$, by

$$f_\gamma(\xi) = F_\gamma^\xi(\kappa_\xi)$$

1. **Increasing**: Just use that if $A_\xi \in U_\xi, \xi < \lambda$, then $x_\xi \in A_\xi$ for all large ξ.

2. **Cofinal**: We use a bounding lemma.
The scales

\[\langle f_\gamma \mid \gamma < \mu \rangle \text{ is very good: } \text{i.e. for almost all } \gamma < \mu \text{ with } \lambda < \text{cf}(\gamma) < \kappa \text{ there exists a club } A \subseteq \gamma \text{ such that } \langle f_\alpha(\eta) \mid \alpha \in A \rangle \text{ is strictly increasing for all large } \eta. \]
\(\langle f_\gamma \mid \gamma < \mu \rangle \) **is very good:** i.e. for almost all \(\gamma < \mu \) with \(\lambda < \text{cf}(\gamma) < \kappa \) there exists a club \(A \subseteq \gamma \) such that \(\langle f_\alpha(\eta) \mid \alpha \in A \rangle \) is strictly increasing for all large \(\eta \).

Proof.

(Sketch) Let \(\gamma < \mu \) with \(\lambda < \text{cf}(\gamma) < \kappa \). (Note that \(\text{cf}(\gamma)^V = \text{cf}(\gamma)^V[G] \)) Let \(A \subseteq \gamma \) with \(\text{o.t.}(A) = \text{cf}(\gamma) \), \(A \in V \).
\[\langle f_\gamma \mid \gamma < \mu \rangle \text{ is very good: i.e. for almost all } \gamma < \mu \text{ with } \lambda < \text{cf}(\gamma) < \kappa \text{ there exists a club } A \subseteq \gamma \text{ such that } \langle f_\alpha(\eta) \mid \alpha \in A \rangle \text{ is strictly increasing for all large } \eta. \]

Proof.

(Sketch) Let \(\gamma < \mu \) with \(\lambda < \text{cf}(\gamma) < \kappa \). (Note that \(\text{cf}(\gamma)^V = \text{cf}(\gamma)^V[G] \)) Let \(A \subset \gamma \) with \(o.t.(A) = \text{cf}(\gamma), A \in V \).

For \(\xi < \lambda \) and \(\delta < \eta \) in \(A \), \(j_{\xi}(F_\delta^\xi)(\kappa) = \delta < \eta = j_{\xi}(F_\eta^\xi)(\kappa) \), so
\[\{ x \mid F_\delta^\xi(\kappa_x) < F_\eta^\xi(\kappa_x) \} \in U_\xi. \]
\[\langle f_\gamma \mid \gamma < \mu \rangle \text{ is very good: } \text{i.e. for almost all } \gamma < \mu \text{ with } \lambda < \text{cf}(\gamma) < \kappa \text{ there exists a club } A \subseteq \gamma \text{ such that } \langle f_\alpha(\eta) \mid \alpha \in A \rangle \text{ is strictly increasing for all large } \eta. \]

Proof.

(Sketch) Let \(\gamma < \mu \) with \(\lambda < \text{cf}(\gamma) < \kappa \). (Note that \(\text{cf}(\gamma)^V = \text{cf}(\gamma)^{V[G]} \)) Let \(A \subset \gamma \) with \(o.t.(A) = \text{cf}(\gamma), \ A \in V \).

For \(\xi < \lambda \) and \(\delta < \eta \) in \(A \), \(j_{U_\xi}(F^\xi_\delta)(\kappa) = \delta < \eta = j_{U_\xi}(F^\xi_\eta)(\kappa), \) so
\[\{x \mid F^\xi_\delta(\kappa_x) < F^\xi_\eta(\kappa_x)\} \in U_\xi. \]

Using \(\lambda < \text{card}(A) < \kappa \) and taking intersections of measure one sets we get:
\[\forall \xi < \lambda, \forall U_\xi x, \langle F^\xi_\delta(\kappa_x) \mid \delta \in A \rangle \text{ is increasing.} \]
\[\langle f_\gamma \mid \gamma < \mu \rangle \text{ is very good: } \text{i.e. for almost all } \gamma < \mu \text{ with } \lambda < \text{cf}(\gamma) < \kappa \text{ there exists a club } A \subseteq \gamma \text{ such that } \langle f_\alpha(\eta) \mid \alpha \in A \rangle \text{ is strictly increasing for all large } \eta. \]

Proof.

(Sketch) Let \(\gamma < \mu \) with \(\lambda < \text{cf}(\gamma) < \kappa \). (Note that \(\text{cf}(\gamma)^V = \text{cf}(\gamma)^{V[G]} \)) Let \(A \subset \gamma \) with o.t.(\(A \)) = \(\text{cf}(\gamma) \), \(A \in V \).

For \(\xi < \lambda \) and \(\delta < \eta \) in \(A \), \(j_{\xi}\left(F_\xi^\delta(\kappa)\right) = \delta < \eta = j_{\xi}\left(F_\eta^\xi(\kappa)\right) \), so
\[
\{ x \mid F_\delta^\xi(\kappa_x) < F_\eta^\xi(\kappa_x) \} \in U_\xi.
\]
Using \(\lambda < \text{card}(A) < \kappa \) and taking intersections of measure one sets we get:
\[
\forall \xi < \lambda, \forall U_\xi x, \langle F_\delta^\xi(\kappa_x) \mid \delta \in A \rangle \text{ is increasing.}
\]

So for all large \(\xi \), \(\langle F_\gamma^\xi(\kappa_\xi) \mid \delta \in A \rangle \) is increasing. I.e.
\[
\langle f_\delta(\xi) \mid \delta \in A \rangle \text{ is increasing.} \]

\[
\square
\]
The Bad Scale

The entire construction is done after fixing in advance a bad scale $\langle G_\beta \mid \beta < \mu \rangle$ in $\prod_{\alpha < \lambda} \kappa^{+\alpha+1}$ that exists by a lemma of Shelah. The lemma makes use of the supercompactness of κ.

\[V[G] = A \subset \text{On}, (A) = \tau, \lambda < \text{cf} V(\tau) = \tau \leq \delta^{+\lambda+1}, \text{then there is a } B \in V \text{ such that } B \subset A, \text{ and } B \text{ is unbounded in } A. \]
The Bad Scale

The entire construction is done after fixing in advance a bad scale \(\langle G_\beta \mid \beta < \mu \rangle \) in \(\prod_{\alpha < \lambda} \kappa^{+\alpha+1} \) that exists by a lemma of Shelah. The lemma makes use of the supercompactness of \(\kappa \).

Also we fix (again in advance) an inaccessible \(\delta < \kappa \) so that there is a stationary set of bad points of cofinality \(\delta^{+\lambda+1} \).

We arrange the defined forcing to use only measures of completeness greater than \(\delta^{+\lambda+1} \).
The Bad Scale

The entire construction is done after fixing in advance a bad scale \(\langle G_\beta \mid \beta < \mu \rangle \) in \(\prod_{\alpha < \lambda} \kappa^{+\alpha+1} \) that exists by a lemma of Shelah. The lemma makes use of the supercompactness of \(\kappa \).

Also we fix (again in advance) an inaccessible \(\delta < \kappa \) so that there is a stationary set of bad points of cofinality \(\delta^{+\lambda+1} \).

We arrange the defined forcing to use only measures of completeness greater than \(\delta^{+\lambda+1} \).

Lemma
\[
V[G] \models A \subseteq ON, o.t.(A) = \tau, \lambda < cf^V(\tau) = \tau \leq \delta^{+\lambda+1}, \text{ then there is a } B \in V \text{ such that } B \subseteq A, \text{ and } B \text{ is unbounded in } A.
\]
For every $\alpha < \lambda$ and $\eta < \kappa^{+\alpha+1}$, fix $F^\eta_\alpha : \mathcal{P}_\kappa(\kappa^{+\alpha}) \to V$, such that

$$[F^\eta_\alpha]_{U_\alpha} = \eta$$
For every $\alpha < \lambda$ and $\eta < \kappa^{+\alpha+1}$, fix $F^\eta_\alpha : \mathcal{P}_\kappa(\kappa^{+\alpha}) \rightarrow V$, such that
\[
[F^\eta_\alpha]_{U_\alpha} = \eta
\]

Define in $V[G]$, $\langle g_\beta \mid \beta < \mu \rangle$ in $\prod_{\alpha<\lambda} \kappa^{+\alpha+1}$ by setting:
\[
g_\beta(\alpha) = F^G_\beta(\alpha)(x_\alpha)
\]
\[\langle g_\gamma \mid \gamma < \mu \rangle \text{ is not good: (sketch of proof)} \]

1. Suppose \(\beta < \mu \) with \(\text{cf}(\beta) = \delta^{+\lambda+1} \) is a good point for \(\langle g_\gamma \mid \gamma < \mu \rangle \) in \(V[G] \). Then \(\beta \) is a good point in \(V \) for \(\langle G_\gamma \mid \gamma < \mu \rangle \).
\[\langle g_\gamma | \gamma < \mu \rangle \text{ is not good: (sketch of proof)} \]

1. Suppose \(\beta < \mu \) with \(\text{cf}(\beta) = \delta^{+\lambda+1} \) is a good point for \(\langle g_\gamma | \gamma < \mu \rangle \) in \(V[G] \). Then \(\beta \) is a good point in \(V \) for \(\langle G_\gamma | \gamma < \mu \rangle \).

2. There are stationary many bad points with cofinality \(\delta^{+\lambda+1} \) in \(V \) for \(\langle G_\gamma | \gamma < \mu \rangle \) and \(\mathbb{P} \) has the \(\mu \) chain condition, so \(\langle g_\gamma | \gamma < \mu \rangle \) is not good.
\[\langle g_\gamma \mid \gamma < \mu \rangle \textbf{ is not good:} \text{ (sketch of proof)} \]

1. Suppose \(\beta < \mu \) with \(\text{cf}(\beta) = \delta^{+\lambda+1} \) is a good point for \(\langle g_\gamma \mid \gamma < \mu \rangle \) in \(V[G] \). Then \(\beta \) is a good point in \(V \) for \(\langle G_\gamma \mid \gamma < \mu \rangle \).

2. There are stationary many bad points with cofinality \(\delta^{+\lambda+1} \) in \(V \) for \(\langle G_\gamma \mid \gamma < \mu \rangle \) and \(P \) has the \(\mu \) chain condition, so \(\langle g_\gamma \mid \gamma < \mu \rangle \) is not good.

The proof for (1) uses that we can fix an unbounded \(A \subset \beta \) in \(V \) and \(\nu < \lambda \) witnessing goodness of \(\beta \) in \(V[G] \). Then we can show that \((\forall U_\alpha x) \langle F^G_{\alpha}(x) \mid \gamma \in A \rangle \) is increasing for large \(\alpha \). Finally, use that \([F^G_{\alpha}(x)]_{U_\alpha} = G_\gamma(\alpha) \).
We conclude with an open question:

Is it consistent that \aleph_ω is strong limit, SCH fails at \aleph_ω, and weak square fails at \aleph_ω?