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Motivation

The Problems We Focus

I Multi-agent version of a geometrical epistemic logic

I Extension of a model theoretical treatment of epistemic logics
to both multi-modals and multi-dimensions

I Apply them to a dynamic epistemology, namely public
announcement logic
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Motivation

Subset Space Logic: Motivation

Subset space logic (SSL) was first put forward in early 90s by Moss
and Parikh to formalize reasoning about sets and points (Moss &
Parikh, 1992). Their language had two modal operators where one
of them was intended to quantify over the sets (�) whereas the
other in the sets (K). The subsets in Moss and Parikh’s structure
are called observation or measurement sets. The underlying
motivation for the introduction of these two modalities is to be
able to speak about the notion of closeness.
The key idea can be formulated as follows.

In order to get close, one needs to make some effort.
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Motivation

Subset Space Logic: Example I

Imagine a policeman measuring the speed of passing cars. His
knowledge on their speed is restricted to the accuracy of the
measurement device he has been using. Assume that the speed
limit is 50 mph, and his device has an error range of ±2 mph.
Assume that the policeman makes a measurement and finds out
that the car had a speed of 55 mph. Thus, his knowledge of the
speed of the car is restricted to the interval (53 mph, 57 mph).
Since each real number in this interval is larger than the speed
limit, he deduces that the car was over-speeding. Assume now he
makes another measurement for another car and finds out that the
speed of the second car is 51 mph. Thus, the actual speed is in the
interval (49 mph, 53 mph). In this case, he does not know whether
the second car was over-speeding or not.
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Motivation

Subset Space Logic: Example II

Nevertheless, he can improve his knowledge by using a more
sophisticated device. Suppose that he now uses a measurement
device which has an error range of ± 0.5 mph. Then, in that case
he knows that the second car was also over-speeding.
This example illustrates that to gain knowledge, we need to make
some effort. By spending some effort, we eliminate some of the
existing possibilities (i.e. improve our observation or make our
measurement finer), and obtain a smaller set of possibilities. The
smaller the set of observations is, the larger the information we
have.
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Basics

Subset Space Logic: Syntax

The language of SSL LSSL has a countable set P of proposition
variables, a truth constant >, the usual Boolean operators ¬ and
∧, and two modal operators K and �. The formulae in LSSL are
obtained in the usual way from propositional variables by closing
them under ¬, ∧, K and �.

The triple S = 〈S , σ, v〉 is called a subset space model where S is a
nonempty set, σ ⊆ ℘(S) and v : P → ℘(S) is a valuation function
assigning propositional variables to subsets of S .
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Basics

Subset Space Logic: Semantics

s,U |= p if and only if s ∈ v(p)
s,U |= ϕ ∧ ψ if and only if s,U |= ϕ and s,U |= ψ
s,U |= ¬ϕ if and only if s,U 6|= ϕ
s,U |= Kϕ if and only if t,U |= ϕ for all t ∈ U
s,U |= �ϕ if and only if s,V |= ϕ for all V ∈ σ

such that s ∈ V ⊆ U
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Basics

Axiomatization, Completeness and Decidability

The axiomatization of SSL reflect the fact that the K modality is
S5-like whereas the � modality is S4-like. Moreover, we need
additional axioms to state the interaction between these two
modalities:

I (A→ �A) ∧ (¬A→ �¬A) for atomic sentence A

I K�ϕ→ �Kϕ

The rules of inferences of subset space logic are as expected.

Modus ponens ϕ→ ψ,ϕ ∴ ψ

K-Necessitation ϕ ∴ Kϕ

�-Necessitation ϕ ∴ �ϕ

SSL sound and complete with respect to the given axiomatization.
Moreover, it is decidable.
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Basics

Subset Space Logic: Difficulty of Multi-Agent Case

Imagine that two policemen 1 and 2 measure the speed of a
passing car. Let us assume that the error range is ±2 for both of
them. The policeman 1 reads that the speed of the passing car is
60 whereas for the second one it is 61. Thus, for 1, the interval in
which the actual speed of the car lies is (58, 62) and for 2, it is
(59, 63). Now, considering the entire picture, we know that the
speed is in the interval (59, 62). However, it makes no sense to ask
“What does policeman 2 know at the point 58.5?” where 58.5 is in
the observation set of 1, not in that of 2.
This example shows that the observation sets of the agents should
be compatible with each other. In this respect, we will construct
the multi-agent model with regard to two focii in question: the
knowledge of the individual agents, and the admissibility of the
observation sets for the agents in question.
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Introduction

Knowledge Structures: Basics

Knowledge structures are constructed recursively.
We define 0-ary world as the empty sequence 〈〉.
Next, we define 0th-order assignment f0 as a truth assignment
from the set of propositional variables to the set of states. Notice
that this gives a description of the real world independent from the
beliefs’ of the agents.
In the next stage, we construct the sequence 〈f0〉 of length 1.
The intuition behind this is the observation that a “1-world is the
description of the reality” from god’s view, and hence independent
from the beliefs’ of the agents as we already remarked (Fagin,
1994).
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Introduction

Knowledge Structures: Basics

A 1st-order assignment is a function f1(i) from the set of agents A
to the set of 1-worlds 〈f0〉. The intuition behind this construction is
that it “represent[s] agent i ’s beliefs about nature” (Fagin, 1994).
Therefore, for some 0-th order assignment (i.e. a propositional
valuation) g0 and for an agent i , we have g0 ∈ f1(i) if and only if
agent i considers g0 a possible state of nature.
We will call the sequence 〈f0, f1〉 a 2-world. Let us denote the set
of 2-worlds by W2, and in general the set of n-worlds by Wn.
Now, in a similar fashion, a 2nd-order assignment f2 is a function
from A to ℘(W2). Under this construction, for the agent i , f2(i)
represents the state of nature together with i ’s beliefs about the
agents’ beliefs about nature. Thus, the 2-world 〈g0, g1〉 ∈ f2 means
that the functions g0 and g1 are 0-th order and 1st-order
assignment respectively.
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Introduction

Knowledge Structures: Syntactic Restrictions

Assume that for an ordinal α, we defined the set Wα of all
α-worlds.
Consequently, an α-world is a sequence 〈f0, f1, . . . , fα〉 of length
α + 1 where each fλ is a λth-order assignment satisfying and
〈h0, . . . , hλ−1〉 ∈ fλ if and only if there exists a λth-order
assignment hλ such that 〈h0, . . . , hλ〉 ∈ fλ+1 for all λ ≤ α− 1.
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Introduction

Knowledge Structures: Epistemic Restrictions

First let us consider the veridicality axiom Kϕ→ ϕ at a 2-world
〈f0, f1〉. In a S5-system, since each agent considers the state of
nature a possibility, we impose that f0 ∈ f1(i) for each agent i .
Thus, in general, for α ≥ 1, we have 〈f1, . . . , fα−1〉 ∈ fα(i) for each
i ∈ A.
Second, in order to observe the restrictions which are caused by
the positive and negative introspection principles Kϕ→ KKϕ and
¬Kϕ→ K¬Kϕ respectively, let us consider the following 3-world
〈f0, f1, f2〉. In order to get a S5 structure, we require that for each
agent i , if 〈h0, h1〉 ∈ f2(i) then h1(i) = f1(i).
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Introduction

Knowledge Structures: Semantics

The semantics of a formula ϕ in a knowledge structures for a given
(α+1)-world 〈f0, . . . , fα〉 where d(ϕ) ≤ α is given as follows.

〈f0, . . . , fα〉 |= p iff p is a propositional variable which is true
under the valuation f0

〈f0, . . . , fα〉 |= ¬ϕ iff 〈f0, . . . , fα〉 6|= ϕ
〈f0, . . . , fα〉 |= ϕ ∧ ψ iff 〈f0, . . . , fα〉 |= ϕ and 〈f0, . . . , fα〉 |= ψ
〈f0, . . . , fα〉 |= Kiϕ iff 〈h0, . . . , hα−1〉 |= ϕ for each

〈h0, . . . , hα−1〉 ∈ fα(i)
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Extensions of KS

Bimodal Knowledge Structures

The given construction of knowledge structures works for unimodal
case. Therefore, we first need to extend it to bimodal logics.
First, we will need another set of assignment functions denoted by
gi . Thus, the order assignments will be ordered pairs (fα, gα) where
the family of fαs are the epistemic functions and the family of gαs
are the functions which represent the effort modality in our case.
Under these conditions, the semantics of the effort modality is
given as follows.
〈g0, . . . , gα〉 |= �iϕ iff 〈k0, . . . , kα−1〉 |= ϕ for each

〈k0, . . . , kα−1〉 ∈ gα(i)
Notice that as the real world is the same from both modal point
f0 = g0.
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Tower Models

Geometry of Multi-Agent Subset Space Logic

So far, we have established an analytical treatment. What is the
geometrical counterpart of it then?
We will now construct the subset structures starting from a given
neighborhood situation (s,U) at which we will evaluate the given
specific formula (Başkent, 2007).
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Tower Models

Admissible Sets

Putting all the aforementioned observations and intuitions
together, let us now inductively construct the sequence of
admissible neighborhood situations Admi (s,U) for the agent i ∈ A
from the initial neighborhood situation (s,U).

Admi
0(s,U) = {(s,U)} if s ∈ U ∈ σi

Admi
1(s,U) = {(t,U), (s,V ) | t ∈ U,V ⊆ U for V ∈ ∪iσi}

Admi
n+1(s,U) = {(y ,X ), (x ,Y ) | y ∈ X ,Y ⊆ X ,Y ∈ ∪iσi

for each (x ,X ) ∈ Admi
n(s,U)}

Admi (s,U) =
⋃
n

Admi
n(s,U)
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Tower Models

Admissible Sets: Semantics

We can now give a semantics for multi-agent spaces using subset
structures for the formula ϕ with d(ϕ) = n.

s,U |= p iff s ∈ v(p)
s,U |= ¬ϕ iff s,U 6|= ϕ
s,U |= ϕ ∧ ψ iff s,U |= ϕ and s,U |= ψ
s,U |= Kiϕ iff t,U |= ϕ for all (t,U) ∈ Admi

n(s,U)
s,U |= �iϕ iff s,V |= ϕ for all (s,V ) ∈ Admi

n(s,U)
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Tower Models

Multi-agent Knowledge Structures vs Admissible Sets

Theorem
Let 〈S , σ, v〉 be a subset space and (s,U) be a neighborhood
situation. Assume that k = 〈(f0, g0), . . . , (fα, gα)〉 is the subset
space knowledge structure corresponding to (s,U) where each
(fi , gi ) for i ≤ α is interpreted at a neighborhood situation in
Adm(s,U). Then, for any formula ϕ with d(ϕ) ≤ α, we have

k |= ϕ if and only if s,U |= ϕ
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Tower Models

Completeness

Theorem
Multi-agent subset space logic with the given semantics is
complete and decidable.
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An Application

Public Announcement Logic in Subset Space Logic

First, topological modal logic:

Theorem
PAL in topological spaces is complete with respect to the
axiomatization given.

Now, subset spaces:

Theorem ((Başkent, 2007))

PAL in SSL is sound and complete.
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An Application

Public Announcement Logic in Knowledge Structures

Theorem
PAL in knowledge structures is complete.

We need some natural extra axioms, but they are easy to construct.

Moreover:

Theorem
PAL in topological spaces is complete.
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Overview

Recap of the Results

I Multi-agent version of SSL with respect to both a model
theoretical and a geometrical setting

I Extension of a modal theoretical treatment of epistemic logics
to both multi-modals and multi-dimensions

I Apply them to a dynamic epistemology, namely public
announcement logic, with straight-forward completeness
results
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Future

Future Work

Coalgebraic Perspective

∇ modality with its epistemic connotations

History Based Models

Application oriented models.
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Future
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Future

Thanks!
Questions or Comments?

Talk slides and the paper are available at:

www.canbaskent.net
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