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Motivations

Definition
Numbering of a countable set A is a surjective mapping
® : ! → A.

Definition
Numbering ® : ! → A of a family of c.e. sets A is called
computable if {< x , n >: x ∈ ®(n)} is c.e. set, i.e. the sequence
®(0), ®(1), . . . uniformly c.e.

The main important examples of computable numberings are
W0,W1, . . . and '0, '0 . . . .



Theorem (Myhill)

® is computable ⇐⇒ ®(x) = Wf (x) for some computable
function f and all indices x.

Definition
Numbering ® is reducible to numbering ¯ (® ⩽ ¯ ) if
®(x) = ¯(f (x)) for some computable function f and all x ∈ !. If
® ⩽ ¯ and ¯ ⩽ ® then ® and ¯ are called equivalent numberings.

Note: Wx = Wy is Π0
2 relation.



Approach of Goncharov-Sorbi

Let C be a family of constructive objects described by ’expressions’
(programs) of some language ℒ equipped with Gödel numbering
° : ! → ℒ.
Any partial mapping i : ℒ → C could be treated as an
interpretation of the ’expressions’ from ℒ.
Numbering ® : ! → A ⊆ C is called computable w.r.t.
interpretation i if for some computable function f diagram

!
®−−−−→ A

f

⏐⏐y
x⏐⏐i

! −−−−→
G

ℒ

is commutative.



Computability = definability, arithmetical case

!
®−−−−→ A

f

⏐⏐y
x⏐⏐i

! −−−−→
G

ℒ

C = Σ0
n+1, A ⊆ Σ0

n+1,
ℒ = Σn+1 − formulas of Peano arithmetics ,
i(Φ) = {x : N ⊨ Φ(x)}
Definition (Goncharov and Sorbi)

Numbering ® of a family A is called Σ0
n+1-computable if the

relation x ∈ ®(m) is definable in the standard model N of
arithmetics by Σn+1 formulae.



Criterion of computable numbering in the arithmetical
hierarchy.

Theorem (Goncharov and Sorbi)

A numbering ® of a family A of Σ0
n+1 sets is Σ0

n+1-computable
⇐⇒ the sequence ®(0), ®(1), . . . is uniform in Σ0

n+1 ⇐⇒ this

sequence is uniformly c.e. relative to oracle ∅(n).
The last equivalence due to the theorem of Kleene-Post.



Computability = definability, hyperarithmetical case

!
®−−−−→ A

f

⏐⏐y
x⏐⏐i

! −−−−→
G

ℒ

Let ½ be a computable ordinal, C = Σ0
½, A ⊆ Σ0

½,
ℒ = {Σ½ − computable formulas of Peano arithmetics},
i(Φ) = {x : N ⊨ Φ(x)}
Definition (Badaev and Goncharov)

Numbering ® of a family A is called Σ0
½-computable if the relation

x ∈ ®(m) is definable in the standard model of arithmetics by Σ½

formulae.



Criterion of computable numbering in the
hyperarithmetical hierarchy.

Theorem (Badaev and Goncharov)

A numbering ® of a family A of Σ0
½ sets is Σ0

½-computable ⇐⇒
the sequence ®(0), ®(1), . . . is uniform in Σ0

½ ⇐⇒ this sequence
is uniformly c.e. relative to oracle H(r) for some Kleene ordinal
notation r of ½.



Notions of computable numberings in the hierarchies.

Formal approach. We will consider computable numberings in the
hierarchy of Ershov, arithmetical and analitical hierarchies. Let
i = −1, 0, 1 and let ½ be a computable ordinal. Numbering ® of a
family A ⊆ Σi

½ is called Σi
½– computable (® ∈ Comi

½(A)) if x ∈ ®y

is Σi
½– relation, i.e. the sequence ®0, ®1, ®2, . . . is uniformly Σi

½.

Πi
½- and Δi

½-computable numberings are defined in the same way.



Monotonic and non-monotonic computations.

Let ® be a numbering of a family A. Let A(e, x , t) be a function
s.t.:

1. range(A) ⊆ {0, 1};
2. A(e, x , 0) = 0, for all e and x ;

3. for every x , e,
x ∈ ®(e) ⇐⇒ limt A(e, x , t) exists and equal 1

If A ⊆ Σ0
1 then a numbering ® is Σ0

1-computable iff A might be
chosen computable and monotonic in t for all e, x .

If A ⊆ Δ0
2 then a numbering ® is Δ0

2-computable iff A might be
chosen computable and limt A(e, x , t) exists for all e, x .

If A ⊆ Σ−1
n+2 then a numbering ® is Σ−1

n+2-computable iff A might
be chosen computable and
∣{t : A(e, x , t + 1) ∕= A(e, x , t)}∣ ≤ n + 2 for all e, x .



If A ⊆ Σ0
n+2 then a numbering ® is Σ0

n+2-computable iff A might

be chosen computable relative to oracle ∅(n+1) and monotonic in t
for all e, x .



Principal numberings.

Myhill’s theorem again:

Theorem
® is Σ0

1-computable numbering ⇐⇒ ® ⩽ W.

Definition
¯ : ! → A ⊆ Σi

½ is called principal numbering of A if

(a) ¯ ∈ Comi
½(A),

(b) ® ⩽ ¯ for all ® ∈ Comi
½(A).

Principal numbering of A, if any, is unique up to equivalence of
numberings.



Theorem
For every i = −1, 0, 1 and for every ½ > 1, the family Σi

½ has a
principal numbering.

Sketch of proof. Let ¯ be defined by diagram

!
¯−−−−→ Σi

½

id

⏐⏐y
x⏐⏐i

! −−−−→
G

ℒ

Here id is the identical function: id(x) = x . Therefore, ¯ = i ∘ G .



Now, for every ® ∈ Comi
½(Σ

i
½) there is a computable function f s.t.

!
®−−−−→ Σi

½

f

⏐⏐y
x⏐⏐i

! −−−−→
G

ℒ

¯ is the arrow which goes through diagonal from left low corner ⇒
® = ¯ ∘ f .



Theorem (Lachlan)

Every finite family A ⊂ Σ0
1 has a principal numbering.

Idea of fixed point in the numbering W .

Uniform transformation Wx −→ Vx s.t. for all x ,
Vx ∈ A and
if Wx ∈ A then Vx = Wx .



Theorem (Badaev, Goncharov, Sorbi)

Finite family A ⊂ Σ0
n+2 has a principal Σ0

n+2-computable
numbering ⇐⇒ A has the least set under inclusion.

Idea of completion of numberings.



Theorem (Abeshev, Badaev)

For every n and every set A ∈ Σ−1
n+2, each finite family of finite

extensions of A has a principal numbering.

Again, the idea of fixed point but now in the principal numbering
W−1,n+2.

Uniform partial transformation W−1,n+2
x −→ Vx s.t. for all x ,

if Vx is defined then Vx ∈ A and
if Wx ∈ A then Vx is defined and Vx = W−1,n+2

x .

Question. Is there any structural criterions for a finite family of
Σ−1
n+2-sets to have a principal numbering.



Minimal numberings.

A lot of papers and results on a computable minimal numberings
for the families of c.e. sets. Might be, they were caused by the
following long-standing open problem:
Question [Ershov,1967]. What is a possible number of the
computable minimal numberings (up to equivalence) of the
families of c.e. sets?

This number might be equal to 0(Vijugin,Badaev), 1, !. But what
about 2, 3, . . . ? No answer.

Theorem (Badaev, Goncharov)

Every infinite family A ⊂ Σ0
n+2 has infinitely many pairwise

incomparable Σ0
n+2-computable minimal numberings.

Theorem (Abeshev, Badaev, Manat)

For every n, there exists a family A ⊆ Σ−1
n+1 which has no any

Σ−1
n+1-computable minimal numbering.



Friedberg numberings in the classical case.

Theorem (Friedberg)

There exists one-to-one computable numbering of the class Σ0
1 of

all c.e. sets.

It is well-known that the class Σ0
1 has indeed infinitely many

pairwise incomparable Friedberg numberings (Ershov,
Khutoretskii).
The problem of Ershov restricted on the class of Friedberg
numberings is completely resolved. Possible number of Friedberg
numberings inncludes all the spectrum 0, 1, 2, 3, . . . , !. The most
important result was obtained by Goncharov.

Theorem
For every n ≥ 2, there exists a family of c.e. sets with exactly n
Friedberg numberings.



Friedberg numberings in the arithmetical and analitical
hierarchy.

Every class Σ0
n+2 has a Friedberg numbering by straightforward

relativization of the theorem of Friedberg.

Observation: if a family A ⊆ Σ0
n+2 has a Friedberg numbering

then A has infinitely many Friedberg numberings.

Question. Does every infinite computable family of Σ0
n+2-sets

have a Friedberg numbering?

Theorem (Owings,1970)

The class Π1
1 has no Friedberg numbering.



Friedberg numberings in the hierarchy of Ershov.

Theorem (Goncharov, Lempp, Solomon)

Every class Σ−1
n+1 has a Friedberg numbering.

Theorem (Goncharov, Lempp, Solomon)

There exists a family of d.c.e. sets without Friedberg numberings.



Theorem (Badaev, Lempp)

There exists a family A ⊆ Σ−1
2 which has exactly 2 minimal

numbering and they both are Friedberg numberings.

Theorem (Badaev, Lempp, Kastermans - in progress)

For every n > 0, there exists a family of d.c.e. sets with n minimal
numberings which are Friedberg numberings.



Rogers semilattice ℛi
½(A) is the quotient structure of

⟨Comi
½(A),⩽⟩ w.r.t. equivalence of numberings.

The l.u.b. in Rogers semilattices is induces by join (direct sum) of
two numberings:
(®⊕ ¯)(2x) = ®(x) and (®⊕ ¯)(2x + 1) = ¯(x)

The first problem on Rogers semilattices is the problem of their
cardinality.



Cardinality: classical case.

Theorem (Khutoretskii, 1971)

Let A be a computable family of c.e. sets. Then
(i) if ® ∕⩽ ¯ are computable numberings of A then there is a
computable numbering ° of A with ° ∕⩽ ¯ and ® ∕⩽ ¯ ⊕ °;
(ii) if the Rogers semilattice ℛ0

1(A) contains more than one
element, then it is infinite.



Cardinality in the case of the arithmetical hierarchy.

Theorem (Goncharov and Sorbi)

If A ⊆ Σ0
n+2 is a computable family and ∣A∣ > 1 then ℛ0

n+2(A) is
infinite.



Theorem of Khutoretskii in the hierarchy of Ershov.

Theorem (Badaev, Lempp)

There is a family A ⊆ Σ−1
2 , and there are computable Friedberg

numberings ® and ¯ of the family A such that ® ∕⩽ ¯ and such
that for any computable numbering ° of A, either ® ⩽ ° or ° ≡ ¯.

Conjecture[Badaev, Lempp, Kastermans] For every n ∈ !, there
exists a family of d.c.e. sets A with ∣ℛ−1

2 (A)∣ = n.



Isomorphisms types and elementary theories.

Theorem (Badaev, Goncharov)

For any computable ordinals ¿ > 0 and ½ and for every Σ0
¿–

computable family A and every non-trivial Σ0
½– computable family

ℬ, if ¿ + 3 ≤ ½ then the Rogers semilattices ℛ0
¿ (A) and ℛ0

½(ℬ) are
not isomorphic.

Theorem (Badaev, Goncharov, Sorbi)

For every n, there exist infinitely many Σ0
n+1– computable families

with elementary pairwise different Rogers semilattices.



Ideals and intervals.

Theorem (Podzorov)

For every computable finite (infinite) family A ⊆ Σ0
n+2 and every

® ∈ Com0
n+2(A), the lattice ℰ★ (relatively, ℰ★ ∖ {∅★}) of c.e. sets

modulo Freshet ideal is isomorphic to the low cone ˆ̄ of ℛ0
n+2(A)

for some numbering ¯ which is ∅′-equivalent to ®.



Ideals and intervals.

Let ℒ0
m be the upper semilattice of c.e. m-degrees.

Theorem
(1) Lachlan semilattices are exactly those which are isomorphic to
ℒ0
m or its principal ideals, and equivalently, which are distributive

semilattices with the least and greatest elements and has Σ0
3

representation [Podzorov].
(2) For every finite family of A of c.e. sets, the principal low and
upper cones as well as segments of ℛ0

1(A) are exactly Lachlan
semilattices.
(3) For every every finite family of A of c.e. sets with one-element
derivative subfamily, ℛ0

1(A) is isomorphic to ℒ0
m.



Thank you!



...
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