Complete axiomatizations of modal logics for region-based theories of space

Philippe Balbiani Institut de recherche en informatique de Toulouse CNRS – Toulouse University

- Region-based theory of space
 - Spatial entities
 - Regions
 - Spatial relations
 - Part-of
 - Contact (connection)

• Adjacency spaces

– (W,R)

- Spatial entities
 - Regions: sets of cells
- Spatial relations
 - Part-of: inclusion
 - Contact: a and b are in contact iff for some x∈W and y∈W we have x∈a, xRy and y∈b

- Modal logics for region-based theories of space
 - Boolean variables: p_1, p_2, \ldots
 - Boolean operations: 0, *, \cup
 - Boolean terms
 - $a ::= 0 | a^* | (a \cup b)$
 - Modal connectives: \leq (part-of), C (contact)
 - Propositional connectives: \perp , \neg , v
 - Modal formulas
 - $\phi ::= (a \le b) |(aCb)| \bot |\neg \phi|(\phi \lor \psi)$

- Outline
 - Syntax and relational semantics
 - Modal definability and undefinability
 - Axiomatizations and completeness
 - Filtration and small canonical models
 - Logics related to the colourability of graphs
 - Logics related to RCC
 - Extensions with rules of inference
 - Some complexity results
 - Topological models

- Syntax
 - Language
 - Boolean variables: p₁, p₂, ...
 - Boolean operations: 0, *, \cup
 - Modal connectives: \leq (part-of), C (contact)
 - Propositional connectives: \bot , \neg , \lor
 - Boolean terms
 - $a ::= \underline{0} | a^* | (a \cup b)$
 - Modal formulas
 - $\phi ::= (a \le b) |(aCb)| \bot |\neg \phi|(\phi \lor \psi)$

- Syntax
 - Language
 - Boolean variables: p₁, p₂, ...
 - Boolean operations: 0, *, \cup
 - Modal connectives: \leq (part-of), C (contact)
 - Propositional connectives: \bot , \neg , v
 - Boolean terms
 - $a ::= 0 \left| \underline{a}^* \right| (a \cup b)$
 - Modal formulas
 - $\phi ::= (a \le b) |(aCb)| \bot |\neg \phi|(\phi \lor \psi)$

- Syntax
 - Language
 - Boolean variables: p₁, p₂, ...
 - Boolean operations: 0, *, \cup
 - Modal connectives: \leq (part-of), C (contact)
 - Propositional connectives: ⊥, ¬, v
 - Boolean terms
 - $a ::= 0 | a^* | (a \cup b)$
 - Modal formulas
 - $\phi ::= (a \le b) |(aCb)| \bot |\neg \phi|(\phi \lor \psi)$

- Syntax
 - Language
 - Boolean variables: p₁, p₂, ...
 - Boolean operations: 0, *, \cup
 - Modal connectives: \leq (part-of), C (contact)
 - Propositional connectives: \bot , \neg , v
 - Boolean terms
 - $a ::= 0 | a^* | (a \cup b)$
 - Modal formulas
 - $\phi ::= \underline{(a \le b)} |(aCb)| \bot |\neg \phi|(\phi \lor \psi)$

(a≤b)

- Syntax
 - Language
 - Boolean variables: p₁, p₂, ...
 - Boolean operations: 0, *, \cup
 - Modal connectives: \leq (part-of), C (contact)
 - Propositional connectives: \bot , \neg , v
 - Boolean terms
 - $a ::= 0 | a^* | (a \cup b)$
 - Modal formulas
 - $\phi ::= (a \le b) |(aCb)| \bot |\neg \phi|(\phi \lor \psi)$

(aCb)

- Syntax
 - Abbreviations
 - $(a=b) ::= (a \le b) \land (b \le a)$
 - (a≠b) ::= ¬(a=b)
 - $(aOb) ::= (a \cap b \neq 0) \text{ (overlap)}$
 - (a<<b) ::= ¬(aCb*) (non-tangential inclusion)
 - Substitution
 - $a(p_1,...,p_n)/a(a_1,...,a_n), \phi(p_1,...,p_n)/\phi(a_1,...,a_n)$
 - $\varphi(x_1,...,x_n)/\varphi(\phi_1,...,\phi_n)$

(aOb)

- Syntax
 - Abbreviations
 - $(a=b) ::= (a \le b) \land (b \le a)$
 - (a≠b) ::= ¬(a=b)
 - $(aOb) ::= (a \cap b \neq 0)$ (overlap)
 - $(a << b) ::= \neg(aCb^*)$ (non-tangential inclusion)
 - Substitution
 - $a(p_1,...,p_n)/a(a_1,...,a_n), \phi(p_1,...,p_n)/\phi(a_1,...,a_n)$
 - $\varphi(x_1,...,x_n)/\varphi(\phi_1,...,\phi_n)$

(a<<b)

• RCC-8 relations

- RCC-8 relations
 - Disconnected: $DC(a,b) ::= \neg(aCb)$
 - External contact: $EC(a,b) ::= (aCb) \land \neg (aOb)$
 - Partial overlap: $PO(a,b) ::= (aOb) \land \neg (a \le b) \land \neg (b \le a)$
 - Tangential proper part: TPP(a,b) ::= $(a \le b) \land \neg (a < < b) \land \neg (b \le a)$
 - Tangential proper part⁻¹: TPP⁻¹(a,b) ::= $(b \le a) \land \neg (b < a) \land \neg (a \le b)$
 - Nontangential proper part: NTPP(a,b) ::= $(a << b) \land (a \neq b)$
 - Nontangential proper part⁻¹: NTPP⁻¹(a,b) ::= $(b << a) \land (b \neq a)$
 - Equal: EQ(a,b) ::= (a=b)

- Relational semantics
 - Frame (adjacency space)
 - Relational system F = (W,R)
 - W: nonempty set (cells)
 - R: binary relation on W (adjacency relation)

- Relational semantics
 - Frame (adjacency space)
 - Relational system F = (W,R)
 - W: nonempty set (cells)
 - R: binary relation on W (adjacency relation)
 - If a⊆W then [R]a ::= {x∈W: ∀y∈W(xRy→y∈a)} is the set of all cells that are necessarily R-adjacent to a-cells

- Relational semantics
 - Frame (adjacency space)
 - Relational system F = (W,R)
 - W: nonempty set (cells)
 - R: binary relation on W (adjacency relation)
 - If b⊆W then ⟨R⟩b ::= {x∈W: ∃y∈W(xRy∧y∈b)} is the set of all cells that are possibly R-adjacent to b-cells

- Relational semantics
 - Regions in an adjacency space F = (W,R)
 - Arbitrary subsets of W
 - Non-tangential inclusion between two subsets a, b
 - $a <<_R b$ iff for all $x \in W$ and $y \in W$, if $x \in a$ and xRy then $y \in b$
 - a<<_Rb iff a⊆[R]b

- Relational semantics
 - Regions in an adjacency space F = (W,R)
 - Arbitrary subsets of W
 - Contact between two subsets a, b
 - aC_Rb iff for some $x \in W$ and $y \in W$ we have $x \in a$, xRy and $y \in b$
 - $aC_R b$ iff $a \cap \langle R \rangle b \neq \emptyset$

- Relational semantics (definition)
 - Valuations in an adjacency space F = (W,R)
 - Functions v assigning to each Boolean variable p a subset v(p) of W
 - $\underline{v}(0) ::= \emptyset, \underline{v}(p) ::= v(p), \underline{v}(a^*) ::= W \underline{v}(a), \underline{v}(a \cup b) ::= \underline{v}(a) \cup \underline{v}(b)$
 - Models over an adjacency space F = (W,R)
 - M = (W,R,v)
 - Truth of modal formulas in a model M = (W,R,v)
 - $M \mid = (a \le b) \text{ iff } \underline{v}(a) \subseteq \underline{v}(b), M \mid = (aCb) \text{ iff } \underline{v}(a)C_R \underline{v}(b)$
 - Not $M \mid = \bot$, $M \mid = \neg \phi$ iff not $M \mid = \phi$, $M \mid = \phi \lor \psi$ iff $M \mid = \phi$ or $M \mid = \psi$

- Relational semantics (example)
 - Let $\boldsymbol{\varphi}$ be the following modal formula
 - $(p \neq 0) \land (q \neq 0) \land (r \neq 1) \land ((p \cup q) = r) \land (p \neq r) \land (q \neq r) \land \neg (pCr^*) \land \neg (qCr^*)$
 - $-\phi$ is true in the following model

 $-\phi$ is false in all connected models

- Modal logics of classes of frames
 - Logic of a class Σ of frames
 - Set $L(\Sigma)$ of all modal formulas true in Σ
 - Lemma: If $\Sigma_1 \subseteq \Sigma_2$ then $L(\Sigma_2) \subseteq L(\Sigma_1)$.
 - Logic of the class Σ_{all} of all frames
 - L_{all}

- Modal logics of classes of frames
 - Lemma: The following modal formulas are true in the class $\boldsymbol{\Sigma}_{all}$ of all frames:
 - (aCb)→(a≠0),
 - (aCb)→(b≠0),
 - $((a_1 \cup a_2)Cb) \Leftrightarrow (a_1Cb) \lor (a_2Cb),$
 - $(aC(b_1 \cup b_2)) \leftrightarrow (aCb_1)v(aCb_2).$
 - Lemma: The following modal formulas are true in the class Σ_{wser} of all weakly serial frames:
 - (a≠0)⇔(aC1)∨(1Ca),
 - $(a \le b) \Leftrightarrow \neg ((a \cap b^*)C1) \land \neg (1C(a \cap b^*)).$

- A translation into modal logic K with universal modality
 - τ : our language \Rightarrow the modal logic K_U
 - $\tau(p) ::= p$
 - $\tau(0) ::= \bot, \tau(a^*) ::= \neg \tau(a), \tau(a \cup b) ::= \tau(a) \lor \tau(b)$
 - $\tau(a \le b) ::= [U](\tau(a) \rightarrow \tau(b)), \tau(aCb) ::= \langle U \rangle (\tau(a) \land \langle R \rangle \tau(b))$
 - $\tau(\bot) ::= \bot, \tau(\neg \phi) ::= \neg \tau(\phi), \tau(\phi \lor \psi) ::= \tau(\phi) \lor \tau(\psi)$
 - Lemma: F $|=\phi$ (in the sense of our language) iff F $|=\tau(\phi)$ (in the sense of the modal logic K_U).

- Modal definability
 - The class Σ of frames is modally definable by the modal formula ϕ iff for every frame F = (W,R), F $\in \Sigma$ iff F | = ϕ
 - The first-order sentence φ (in R and =) is modally definable by the modal formula φ iff for every frame F = (W,R), F | = φ iff F | = φ
 - Theorem: The following decision problem is undecidable:
 - Given a first-order sentence φ (in R and =), determine if there exists a modal formula φ such that φ is modally definable by φ.

- Modal definability
 - Lemma (first-order examples):
 - 1. <u>Non-emptiness of R</u>:
 - 2. Right seriality of R:
 - 3. Left-seriality of R:
 - 4. Weak seriality of R:
 - 5. Reflexivity of R:
 - 6. Symmetry of R:
 - 7. Universality of R:

es): (1C1).

(p≠0)→(pC1). (p≠0)→(1Cp). (p≠0)→(pC1)∨(1Cp). (Ref) ::= (p≠0)→(pCp). (Sym) ::= (pCq)→(qCp). (p≠0)∧(q≠0)→(pCq).

- Modal definability
 - Lemma (first-order examples):
 - **1.** Non-emptiness of R:
 - 2. <u>Right seriality of R</u>:
 - 3. Left-seriality of R:
 - 4. Weak seriality of R:
 - 5. Reflexivity of R:
 - 6. Symmetry of R:
 - 7. Universality of R:

 $(p\neq 0) \rightarrow (pC1).$ $(p\neq 0) \rightarrow (1Cp).$ $(p\neq 0) \rightarrow (pC1) \lor (1Cp).$ $(Ref) ::= (p\neq 0) \rightarrow (pCp).$ $(Sym) ::= (pCq) \rightarrow (qCp).$ $(p\neq 0) \land (q\neq 0) \rightarrow (pCq).$

- Modal definability
 - Lemma (first-order examples):
 - **1.** Non-emptiness of R:
 - 2. Right seriality of R:
 - 3. <u>Left-seriality of R</u>:
 - 4. Weak seriality of R:
 - 5. Reflexivity of R:
 - 6. Symmetry of R:
 - 7. Universality of R:

(1C1). $(p \neq 0) \rightarrow (pC1).$ $(p \neq 0) \rightarrow (1Cp).$ $(p \neq 0) \rightarrow (pC1) \lor (1Cp).$ $(Ref) ::= (p \neq 0) \rightarrow (pCp).$ $(Sym) ::= (pCq) \rightarrow (qCp).$ $(p \neq 0) \land (q \neq 0) \rightarrow (pCq).$

- Modal definability
 - Lemma (first-order examples):
 - **1.** Non-emptiness of R:
 - 2. Right seriality of R:
 - 3. Left-seriality of R:
 - 4. <u>Weak seriality of R</u>:
 - 5. Reflexivity of R:
 - 6. Symmetry of R:
 - 7. Universality of R:

(1C1). $(p \neq 0) \rightarrow (pC1).$ $(p \neq 0) \rightarrow (1Cp).$ $(p \neq 0) \rightarrow (pC1) \vee (1Cp).$ $(Ref) ::= (p \neq 0) \rightarrow (pCp).$ $(Sym) ::= (pCq) \rightarrow (qCp).$ $(p \neq 0) \land (q \neq 0) \rightarrow (pCq).$

- Modal definability
 - <u>Reflexivity of R</u>: modally defined by (Ref) ::= $(p \neq 0) \rightarrow (pCp)$

- Modal definability
 - <u>Symmetry of R</u>: modally defined by (Sym) ::= $(pCq) \rightarrow (qCp)$

- Modal definability
 - Lemma (second-order examples):
 - 1. Connectedness of R:

 $(Con) ::= (p \neq 0) \land (p^* \neq 0) \rightarrow (pCp^*).$

2. Non n-colourability of R:

 $(\bigcup_{1 \le i \le n} p_i = 1) \land \land_{1 \le i < j \le n} \neg (p_i O p_j) \rightarrow \bigcup_{1 \le i \le n} (p_i C p_i).$

- Modal definability
 - Connectedness of R: modally defined by (Con) ::= $(p \neq 0) \land (p^* \neq 0) \rightarrow (pCp^*)$

- Modal definability
 - Non n-colourability of R: modally defined by

 $(\bigcup_{1 \le i \le n} p_i = 1) \land \land_{1 \le i < j \le n} \neg (p_i O p_j) \rightarrow \bigcup_{1 \le i \le n} (p_i C p_i)$

- Modal undefinability
 - Lemma (modal undefinability criterion): If $\Sigma_1 \subseteq \Sigma_2$, $\Sigma_1 \neq \Sigma_2$ and $L(\Sigma_1)=L(\Sigma_2)$ then Σ_1 is not modally definable.
 - Bounded morphism from a model M = (W,R,v) to a model M' = (W',R',v')
 - Surjective function f from W to W' such that
 - If xRy then f(x)R'f(y)

 $- f(v(p)) \subseteq v'(p)$

- If x 'R 'y ' then $f^{-1}(x')C_Rf^{-1}(y')$ - $f^{-1}(v'(p)) \subseteq v(p)$

- Modal undefinability
 - Lemma (modal undefinability criterion): If $\Sigma_1 \subseteq \Sigma_2, \Sigma_1 \neq \Sigma_2$ and $L(\Sigma_1)=L(\Sigma_2)$ then Σ_1 is not modally definable.
 - Bounded morphism from a model M = (W,R,v) to a model M' = (W',R',v')
 - Surjective function f from W to W' such that
 - If xRy then f(x)R'f(y)- $f(v(p)) \subseteq v'(p)$
- If x 'R 'y ' then f⁻¹(x')C_Rf⁻¹(y') - f⁻¹(v'(p)) ⊆ v(p)

- Modal undefinability
 - Lemma (modal undefinability criterion): If $\Sigma_1 \subseteq \Sigma_2$, $\Sigma_1 \neq \Sigma_2$ and $L(\Sigma_1)=L(\Sigma_2)$ then Σ_1 is not modally definable.
 - Bounded morphism from a model M = (W,R,v) to a model M' = (W',R',v')
 - Surjective function f from W to W' such that
 - If xRy then f(x)R'f(y)
 - $\mathbf{f}(\mathbf{v}(\mathbf{p})) \subseteq \mathbf{v}'(\mathbf{p})$

- If x 'R 'y ' then $f^{-1}(x')C_Rf^{-1}(y')$ - $f^{-1}(v'(p)) \subseteq v(p)$

- Modal undefinability
 - Lemma (modal undefinability criterion): If $\Sigma_1 \subseteq \Sigma_2$, $\Sigma_1 \neq \Sigma_2$ and $L(\Sigma_1)=L(\Sigma_2)$ then Σ_1 is not modally definable.
 - Bounded morphism from a model M = (W,R,v) to a model M' = (W',R',v')
 - Surjective function f from W to W' such that
 - If xRy then f(x)R'f(y)
 - $f(v(p)) \subseteq v'(p)$

- If x 'R 'y ' then $f^{-1}(x')C_Rf^{-1}(y')$ - $f^{-1}(v'(p)) \subseteq v(p)$

- Modal undefinability
 - Lemma (modal undefinability criterion): If $\Sigma_1 \subseteq \Sigma_2, \Sigma_1 \neq \Sigma_2$ and $L(\Sigma_1)=L(\Sigma_2)$ then Σ_1 is not modally definable.
 - Bounded morphism from a model M = (W,R,v) to a model M' = (W',R',v')
 - Surjective function f from W to W' such that
 - $\begin{array}{ll} & \text{If } x \text{Ry then } f(x) \text{R'}f(y) & & \text{If } x \ '\text{R} \ 'y \ ' \ \text{then } f^{-1}(x') \text{C}_{\text{R}} f^{-1}(y') \\ & f(v(p)) \subseteq v'(p) & & f^{-1}(v'(p)) \subseteq v(p) \end{array}$
 - Lemma (bounded morphism lemma): Let f be a bounded morphism from the model M = (W,R,v) to the model M' = (W',R',v'). $M \mid = \phi$ iff $M' \mid = \phi$.

- Modal undefinability
 - Lemma: Let $\Sigma_{ref,sym}$ be the class of all reflexive and symmetric frames and Σ_e be the class of all equivalence relations.

1.
$$L(\Sigma_{ref,sym}) = L(\Sigma_e)$$
.

2. Σ_{e} is not modally definable.

$$(x,\{x,y\}) (y,\{x,y\}) (y,\{y,z\}) (z,\{y,z\})$$

$$(x,\{x\}) (y,\{y\}) (y,\{y,z\}) (z,\{y,z\})$$

$$(x,\{x\}) (y,\{y\}) (z,\{z\})$$

- Modal undefinability
 - Lemma: Let $\Sigma_{2-colour}$ be the class of all 2-colourable frames.
 - 1. $L_{all} = L(\Sigma_{2-colour}).$
 - 2. $\Sigma_{2-colour}$ is not modally definable.

- Axiomatizations
 - Axiomatic system L_{min} for the logic L_{all}
 - Axioms
 - (aCb)→(a≠0) (aCb)→(b≠0)
 - $((a_1 \cup a_2)Cb) \Leftrightarrow (a_1Cb) \lor (a_2Cb) (aC(b_1 \cup b_2)) \Leftrightarrow (aCb_1) \lor (aCb_2)$
 - Rules of inference
 - Modus ponens: from $|--\phi|$ and $|--\phi\rightarrow\psi$, infer $|--\psi|$
 - Extensions of L_{min}
 - L_{min} +Ax where Ax is an arbitrary set of axiom schemes
 - L_{min} +R where R is an additional rule of inference

– Lemma: There is a continuum of axiomatic extensions of L_{min} .

- Canonical models
 - Let L be an axiomatic extension of L_{min}
 - L-theory
 - Set of formulas containing all theorems and closed under modus ponens
 - Consistent L-theory
 - L-theory not containing \perp
 - Maximal L-theory
 - Consistent L-theory containing ϕ or $\neg \phi$ for each modal formula ϕ
 - Lemma (Lindenbaum lemma): Any consistent L-theory S can be extended into a maximal L-theory S'.

- Canonical models
 - Let L be an axiomatic extension of L_{min} and S be a maximal L-theory
 - $a \leq_{S} b \text{ iff } (a \leq b) \in S$ $a =_{S} b \text{ iff } a \leq_{S} b \text{ and } b \leq_{S} a$
 - S-filter
 - Set Γ of boolean terms containing 1 and such that
 - 1. If $a \in \Gamma$ and $a \leq_S b$ then $b \in \Gamma$
 - 2. If $a \in \Gamma$ and $b \in \Gamma$ then $a \cap b \in \Gamma$
 - Consistent S-filter
 - S-filter not containing 0
 - Maximal S-filter
 - Consistent S-filter containing a or a* for each Boolean term a

- Canonical models
 - Let L be an axiomatic extension of L_{min} and S be a maximal L-theory
 - Canonical frame $F_s = (W_s, R_s)$
 - W_s is the set of all maximal S-filters
 - FR_SG iff for all $a \in F$ and $b \in G$ we have $(aCb) \in S$
 - $\qquad \text{Lemma (R-extension lemma): Any consistent S-filters F and} \\ G \text{ such that } FR_SG \text{ can be extended into maximal S-filters } F' \\ \text{ and } G' \text{ such that } F'R_SG'.$

- Canonical models
 - Let L be an axiomatic extension of L_{min} and S be a maximal L-theory
 - Canonical frame $F_S = (W_S, R_S)$
 - W_s is the set of all maximal S-filters
 - FR_SG iff for all $a \in F$ and $b \in G$ we have $(aCb) \in S$
 - Lemma (characterization of C and ≤):
 - 1. $(a \le b) \in S$ iff for all $F \in W_S$, if $a \in F$ then $b \in F$.
 - 2. (aCb)∈S iff for some F∈W_S and G∈W_S we have a∈F, FR_SG and b∈G.

- Canonical models
 - Let L be an axiomatic extension of L_{min} and S be a maximal L-theory
 - Canonical valuation in $F_s = (W_s, R_s)$
 - $v_{S}(p) ::= \{F \in W_{S} : p \in F\}$
 - Canonical model over $F_s = (W_s, R_s)$
 - $M_{\rm S} = (W_{\rm S}, R_{\rm S}, v_{\rm S})$
 - Lemma (truth lemma):
 - 1. $\underline{\mathbf{v}}_{\mathbf{S}}(\mathbf{a}) ::= \{ \mathbf{F} \in \mathbf{W}_{\mathbf{S}} : \mathbf{a} \in \mathbf{F} \}.$
 - 2. $M_{S} \models \phi$ iff $\phi \in S$.
 - Lemma (canonical model lemma): A modal formula φ is a theorem of L iff φ is true in all canonical models of L.

- Completeness theorems
 - Theorem (completeness theorem for L_{min}):
 - 1. Weak completeness. A modal formula ϕ is a theorem of L_{min} iff ϕ is true in all frames.
 - 2. Strong completeness. A set S of modal formulas is consistent in L_{min} iff S has a model.

- Completeness theorems ۲
 - Let L be an axiomatic extension of L_{min}
 - **Proposition (canonical definability lemma):**
 - \forall S, Non-emptiness of R_s: (1C1) is in L. 1.
 - \forall S, Right seriality of R_s: (p≠0) \rightarrow (pC1) is in L. 2.
 - $\forall S, Left-seriality of R_s: (p\neq 0) \rightarrow (1Cp) is in L.$ 3.
 - **4**.
 - \forall S, Reflexivity of R_s: 5.
 - \forall S, Symmetry of R_s: 6.
 - \forall S, Universality of R_s: 7.

 $\forall S$, Weak seriality of R_s : $(p \neq 0) \rightarrow (pC1) \lor (1Cp)$ is in L. (Ref) ::= $(p \neq 0) \rightarrow (pCp)$ is in L.

- $(Sym) ::= (pCq) \rightarrow (qCp)$ is in L.
- $(p\neq 0)\land (q\neq 0) \rightarrow (pCq)$ is in L.

- Completeness theorems
 - Theorem (strong completeness theorem for some extensions of L_{min}): All extensions of L_{min} with axioms from the canonical definability lemma are strongly complete in the corresponding classes of frames.
 - Theorem (strong completeness of the logic of equivalence relations): The logic L_{min} +(Ref)+(Sym) is strongly complete in the class Σ_e of all equivalence relations.

- Weak canonicity
 - An axiomatic extension $L = L_{min} + Ax$ of L_{min} is weakly canonical iff Ax is true in some canonical frame for L
 - Theorem: Every axiomatic extension of L_{min} is weakly canonical.

- Strong canonicity
 - An axiomatic extension $L = L_{min} + Ax$ of L_{min} is strongly canonical iff Ax is true in all canonical frames for L
 - Theorem: All axiomatic extensions of L_{min} with axioms from the canonical definability lemma are strongly canonical.
 - Proposition: The logic L_{min} +(Con) is not strongly canonical.

- Filtration
 - Let M = (W,R,v) be a model and BV be a set of Boolean variables
 - Define the equivalence relation \equiv in W as follows
 - x=y iff for all $p\in BV$, $x\in v(p)$ iff $y\in v(p)$
 - The filtration of M = (W,R,v) through BV is the model M' = (W',R',v') such that
 - W' = W_{|=}
 - |x|R'|y| iff for some $z \in W$ and $t \in W$ we have $x \equiv z$, zRt and $t \equiv y$
 - For all $p \in BV$, $v'(p) = v(p)_{|=}$
 - Remark that $Card(W') \le 2^{Card(BV)}$

• Filtration

- Lemma (filtration lemma):
- 1. For every Boolean term a over BV, $\underline{v}(a)|_{=} = \underline{v}'(a)$.
- 2. For every modal formula ϕ over BV, M $|=\phi$ iff M' $|=\phi$.

- Small canonical models
 - Let $L = L_{min}$ +Ax be an axiomatic extension of L_{min} , S be a maximal L-theory, $M_S = (W_S, R_S, v_S)$ be the canonical model corresponding to S and BV be a finite set of Boolean variables
 - Let $M_S' = (W_S', R_S', v_S')$ be the filtration of $M_S = (W_S, R_S, v_S)$ through BV
 - The frame $F_{S}' = (W_{S}', R_{S}')$ is called small canonical frame for L
 - Lemma (small canonical frame lemma): Ax is true in all small canonical frames for L.

- Weak completeness theorems for the extensions of L_{min}
 - Theorem: Let $L = L_{min}$ +Ax be an axiomatic extension of L_{min} , Σ_{Ax} be the class of all frames determined by Ax and $\Sigma_{Ax,fin}$ be the class of all finite frames determined by Ax. The following conditions are equivalent:
 - 1. ϕ is a theorem of L.
 - 2. ϕ is true in Σ_{Ax} .
 - 3. ϕ is true in $\Sigma_{Ax,fin}$.

- Logics of non colourability
 - Let L^n be the extension of L_{min} with the axiom scheme
 - $(\bigcup_{1 \le i \le n} p_i = 1) \land \land_{1 \le i < j \le n} \neg (p_i O p_j) \rightarrow \bigcup_{1 \le i \le n} (p_i C p_i)$
 - Let L^{∞} be $L^1 \cup L^2 \cup ...$
 - Note
 - L^1 is $L_{min} + (1C1)$
 - L^2 is L_{min} +(pCp)v(p*Cp*)
 - $L^1 \subset L^2 \ldots \subset L^\infty$

- Logics of non colourability
 - Let L^n be the extension of L_{min} with the axiom scheme
 - $(\bigcup_{1 \le i \le n} p_i = 1) \land \land_{1 \le i < j \le n} \neg (p_i O p_j) \rightarrow \bigcup_{1 \le i \le n} (p_i C p_i)$
 - Let L^{∞} be $L^1 \cup L^2 \cup ...$
 - Note
 - L^1 is L_{min} +(1C1)
 - L^2 is L_{\min} +(pCp)v(p*Cp*)
 - $L^1 \subset L^2 \ldots \subset L^\infty$

- Logics of non colourability
 - Theorem:
 - 1. L[∞] is weakly complete in the class of all finite structures possessing a reflexive point.
 - **2.** L^{∞} is decidable.
 - **3.** L^{∞} is not finitely axiomatizable.
 - Theorem (strong completeness theorem for L∞): The logic L∞ is strongly complete in the class of all frames with a reflexive point.

- Stell's reformulation of RCC
 - Contact algebra: Boolean algebra (B,0,*,∪) with a binary relation
 C of contact such that
 - (RCC1) If aCb then $a \neq 0$ and $b \neq 0$
 - (RCC2) (a₁ \cup a₂)Cb iff a₁Cb or a₂Cb and aC(b₁ \cup b₂) iff aCb₁ or aCb₂
 - (RCC3) If $a \neq 0$ then aCa (the reflexivity axiom)
 - (RCC4) If aCb then bCa (the symmetry axiom)
 - (CON) If $a \neq 0$ and $a^* \neq 0$ then aCa^* (the connectedness axiom)
 - (EXT) If $a \neq 1$ then there exists $b \neq 0$ such that $\neg(aCb)$
 - Additional axiom
 - (NOR) If $\neg(aCb)$ then there exists c such that $\neg(aCc)$ and $\neg(c^*Cb)$

- Stell's reformulation of RCC
 - Contact algebra: Boolean algebra (B,0,*,∪) with a binary relation
 C of contact such that
 - (RCC1) If aCb then $a \neq 0$ and $b \neq 0$
 - (RCC2) $(a_1 \cup a_2)$ Cb iff a_1 Cb or a_2 Cb and $aC(b_1 \cup b_2)$ iff aCb_1 or aCb_2
 - (RCC3) If $a \neq 0$ then aCa (the reflexivity axiom)
 - (RCC4) If aCb then bCa (the symmetry axiom)
 - (CON) If $a \neq 0$ and $a^* \neq 0$ then aCa^* (the connectedness axiom)
 - (EXT) If $a \neq 1$ then there exists $b \neq 0$ such that $\neg(aCb)$
 - Additional axiom
 - (NOR) If $\neg(aCb)$ then there exists c such that $\neg(aCc)$ and $\neg(c^*Cb)$

- Stell's reformulation of RCC
 - Contact algebra: Boolean algebra (B,0,*,∪) with a binary relation
 C of contact such that

- (EXT) If $a \neq 1$ then there exists $b \neq 0$ such that $\neg(aCb)$
- Additional axiom
 - (NOR) If $\neg(aCb)$ then there exists c such that $\neg(aCc)$ and $\neg(c^*Cb)$

- Stell's reformulation of RCC
 - Contact algebra: Boolean algebra $(B,0,*,\cup)$ with a binary relation C of contact such that

- (EXT) If $a \neq 0$ then there exists $b \neq 0$ such that (b<<a)
- Additional axiom
 - (NOR) If $\neg(aCb)$ then there exists c such that $\neg(aCc)$ and $\neg(c^*Cb)$

- Stell's reformulation of RCC
 - Contact algebra: Boolean algebra (B,0,*,∪) with a binary relation
 C of contact such that

- (EXT) If $a \neq 0$ then there exists $b \neq 0$ such that (b<<a)
- Additional axiom
 - (NOR) If \neg (aCb) then there exists c such that \neg (aCc) and \neg (c*Cb)

- Stell's reformulation of RCC
 - Contact algebra: Boolean algebra (B,0,*,∪) with a binary relation
 C of contact such that

- (EXT) If $a \neq 0$ then there exists $b \neq 0$ such that (b<<a)
- Additional axiom
 - (NOR) If (a<<b) then there exists c such that (a<<c) and (c<<b)
- Let us consider the following systems related to RCC
 - Weak RCC (WRCC): (RCC1)–(RCC4)
 - Connected weak RCC (WRCC_{CON}): WRCC+(CON)
 - Extensional weak RCC (WRCC_{EXT}): WRCC+(EXT)
 - RCC: WRCC+(CON)+(EXT)
 - Normal extensional weak RCC (WRCC_{EXT,NOR}): WRCC+(EXT)+(NOR)
 - Normal RCC (RCC_{NOR}): RCC+(NOR)

- Axioms and rules of inference
 - (Ref): (p≠0)→(pCp)
 - (Sym): (pCq)→(qCp)
 - (Con): $(p \neq 0) \land (p^* \neq 0) \rightarrow (pCp^*)$

- <u>(Ext)</u>: from $|--\phi\rightarrow(p=0)v(aCp)|$ for p a Boolean variable not occurring in $\phi\rightarrow(a=1)$, infer $|--\phi\rightarrow(a=1)|$
 - (EXT) If $a \neq 1$ then there exists $b \neq 0$ such that $\neg(aCb)$
 - If $\phi \land (a \neq 1)$ is consistent then $\phi \land (p \neq 0) \land \neg (aCp)$ is consistent
- (Nor): from $| -\phi \rightarrow (aCp) \vee (p^*Cb)$ for p a Boolean variable not occurring in $\phi \rightarrow (aCb)$, infer $| -\phi \rightarrow (aCb)$
 - (NOR) If $\neg(aCb)$ then there exists c such that $\neg(aCc)$ and $\neg(c^*Cb)$
 - If $\phi \land \neg(aCb)$ is consistent then $\phi \land \neg(aCp) \land \neg(p^*Cb)$ is consistent

- Axioms and rules of inference
 - (Ref): (p≠0)→(pCp)
 - (Sym): (pCq)→(qCp)
 - (Con): $(p \neq 0) \land (p^* \neq 0) \rightarrow (pCp^*)$

h

p

- (Ext): from $|--\phi\rightarrow(p=0)v(aCp)|$ for p a Boolean variable not occurring in $\phi\rightarrow(a=1)$, infer $|--\phi\rightarrow(a=1)|$
 - (EXT) If $a \neq 1$ then there exists $b \neq 0$ such that $\neg(aCb)$
 - If $\phi \land (a \neq 1)$ is consistent then $\phi \land (p \neq 0) \land \neg (aCp)$ is consistent
- <u>(Nor)</u>: from $|--\phi\rightarrow(aCp)\nu(p^*Cb)$ for p a Boolean variable not occurring in $\phi\rightarrow(aCb)$, infer $|-\phi\rightarrow(aCb)$
 - (NOR) If $\neg(aCb)$ then there exists c such that $\neg(aCc)$ and $\neg(c^*Cb)$
 - If $\phi \land \neg(aCb)$ is consistent then $\phi \land \neg(aCp) \land \neg(p^*Cb)$ is consistent

- PWRCC
 - Extension of L_{min} with the axiom schemes (Ref) and (Sym)
- PWRCC_{EXT}
 - Extension of PWRCC with the rule of inference (Ext)
- PWRCC_{NOR}
 - Extension of PWRCC with the rule of inference (Nor)
- PWRCC_{EXT,NOR}
 - Extension of PWRCC with the rules of inference (Ext) and (Nor)

- PWRCC_{CON}
 - Extension of L_{min} with the axiom schemes (Ref), (Sym) and (Con)
- PWRCC_{CON,EXT}
 - Extension of PWRCC_{CON} with the rule of inference (Ext)
- PWRCC_{CON,NOR}
 - Extension of $PWRCC_{CON}$ with the rule of inference (Nor)
- PWRCC_{CON,EXT,NOR}
 - Extension of PWRCC_{CON} with the rules of inference (Ext) and (Nor)

- Admissibility of the rules (Ext) and (Nor)
 - Lemma: (Ext) is an admissibile rule both in PWRCC and also in $\ensuremath{\mathsf{PWRCC}}$
 - Lemma: (Nor) is an admissibile rule both in PWRCC and also in $\ensuremath{\mathsf{PWRCC}}$

- The logic PWRCC_{NOR}
 - Extension of L_{min} with the axiom schemes (Ref) and (Sym) and the rule of inference (Nor)
 - (Nor): from |--φ→(aCp)∨(p*Cb) for p a Boolean variable not occurring in φ→(aCb), infer |--φ→(aCb)
- The logic $PWRCC_{NOR^{\infty}}$
 - Extension of L_{min} with the axiom schemes (Ref) and (Sym) and the rule of inference (Nor_{∞})
 - (Nor_∞): from |---φ→(aCp)v(p*Cb) for all Boolean variables p, infer |--φ→(aCb)

- Some remarks on the effects of (Nor) and (Nor_{∞})

 - Lemma: There exists a set S of modal formulas such that
 - 1. S has a model in the class $\Sigma_{ref,sym}$,
 - 2. S has a model in the class Σ_{e} ,
 - 3. S is consistent in PWRCC_{NOR},
 - 4. S is not consistent in $PWRCC_{NOR^{\infty}}$.

- Some remarks on the effects of (Nor) and (Nor_{∞})
 - Theorem (weak completeness of PWRCC_{NOR}^{∞} in the class of all equivalence relations): A modal formula ϕ is a theorem of PWRCC_{NOR}^{∞} iff ϕ is true in the class Σ_e .
 - Corollary: The logics $PWRCC_{NOR^{\infty}}$ and $L_{min}+(Ref)+(Sym)$ have the same theorems.
 - Proposition: If S is a set of modal formulas consistent in PWRCC_{NOR∞} then S has a model in Σ_e .
 - Proposition: The notion of consistency of $PWRCC_{NOR^{\infty}}$ is not compact.

- Some remarks on the effects of (Nor) and (Nor_{∞})
 - Lemma: The logics $PWRCC_{NOR^{\infty}}$ and $PWRCC_{NOR}$ have equal sets of theorems.
 - Corollary (weak completeness theorem for $PWRCC_{NOR}$): $PWRCC_{NOR}$ is complete in the class Σ_e of all equivalence relations.
 - Theorem (strong completeness theorem for $PWRCC_{NOR}$): A set S of modal formulas is consistent in $PWRCC_{NOR}$ iff S has a model in Σ_e .

- The logic of 2-chromatic graphs
 - A frame F = (W,R) is called 2-chromatic if it is not 1-colourable, but is 2-colourable
 - L_{2-chromatic}
 - Extension of L_{min} with the axiom (1C1) and the rule of inference (Col₂)
 - (Col₂): from $|--\neg(pCp)\land\neg(p^*Cp^*)\rightarrow\phi$ for p a Boolean variable not occurring in ϕ , infer $|--\phi$
 - If $\neg \phi$ is consistent then $\neg (pCp) \land \neg (p^*Cp^*) \land \neg \phi$ is consistent

- The logic of 2-chromatic graphs
 - A frame F = (W,R) is called 2-chromatic if it is not 1-colourable, but is 2-colourable
 - L_{2-chromatic}
 - Extension of L_{min} with the axiom (1C1) and the rule of inference (Col₂)
 - (Col₂): from $|--\neg(pCp)\land\neg(p^*Cp^*)\rightarrow\phi$ for p a Boolean variable not occurring in ϕ , infer $|--\phi$
 - If $\neg \phi$ is consistent then $\neg (pCp) \land \neg (p^*Cp^*) \land \neg \phi$ is consistent
 - Lemma: All canonical frames for L_{2-chromatic} are 2-chromatic.
 - Theorem: The logic $L_{2-chromatic}$ is weakly and strongly complete in the class of all 2-chromatic frames.
 - Corollary: The logics $L_{2-chromatic}$ and $L_{min}+(1C1)$ have the same theorems.

Some complexity results

Some complexity results

- Theorem:
- 1. Satisfiability in Σ_{all} is NP-complete.
- 2. Satisfiability in $\Sigma_{ref,sym}$ is NP-complete.
- 3. Satisfiability in the class of all connected frames is PSPACE-complete.
- 4. Satisfiability in the class of all reflexive, symmetric and connected frames is PSPACE-complete.

Some complexity results

- Theorem: Let ϕ be a modal formula.
- 1. Satisfiability in the class Σ_{ϕ} of all frames F = (W,R) such that F | = ϕ is in 2EXPTIME.
- 2. If the membership problem in the class Σ_{ϕ} is in NP then satisfiability in the class Σ_{ϕ} is in NEXPTIME.

- Some topological notions
 - Let X be a topological space
 - $x \in Cl(a)$ iff for all closed sets b of X, if $a \subseteq b$ then $x \in b$
 - $x \in Int(a)$ iff there exists an open set b of X such that $b \subseteq a$ and $x \in b$
 - A subset a of X is <u>regular closed</u> iff Cl(Int(a)) = a
 - A subset a of X is regular open iff Int(Cl(a)) = a

- Some topological notions
 - Let X be a topological space
 - $x \in Cl(a)$ iff for all closed sets b of X, if $a \subseteq b$ then $x \in b$
 - $x \in Int(a)$ iff there exists an open set b of X such that $b \subseteq a$ and $x \in b$
 - A subset a of X is regular closed iff Cl(Int(a)) = a
 - A subset a of X is regular open iff Int(Cl(a)) = a
 - The algebra (RC(X),0,1, $*,U,\Omega,C$)
 - RC(X) is the set of all regular closed sets of X
 - $0 = \emptyset$, 1 = X, $a^* = Cl(X-a)$, $aUb = a \cup b$, $aAb = Cl(Int(a \cap b))$
 - <u>aCb iff a∩b ≠ Ø</u>

- Some topological notions
 - Let X be a topological space
 - $x \in Cl(a)$ iff for all closed sets b of X, if $a \subseteq b$ then $x \in b$
 - $x \in Int(a)$ iff there exists an open set b of X such that $b \subseteq a$ and $x \in b$
 - A subset a of X is regular closed iff Cl(Int(a)) = a
 - A subset a of X is regular open iff Int(Cl(a)) = a
 - The algebra (RO(X),0,1, $*,U,\Omega,C$)
 - RO(X) is the set of all regular open sets of X
 - $0 = \emptyset$, 1 = X, $a^* = Int(X-a)$, $aUb = Int(Cl(a \cup b))$, $a\cap b = a \cap b$
 - <u>aCb iff Cl(a) \cap Cl(b) $\neq \emptyset$ </u>

- Some topological notions
 - Let X be a topological space
 - X is <u>connected</u> iff X cannot be represented by a sum of two disjoint nonempty open sets of X
 - X is semiregular iff X has a closed base of regular closed sets
 - X is weakly regular iff X is semiregular and for all open sets a of X, there exists an open set b of X such that Cl(a)⊆b
 - X is κ-normal iff every two disjoint regular closed sets of X can be separated by two disjoint open sets of X

- Some topological notions
 - Let X be a topological space
 - X is connected iff X cannot be represented by a sum of two disjoint nonempty open sets of X
 - X is semiregular iff X has a closed base of regular closed sets
 - X is <u>weakly regular</u> iff X is semiregular and for all open sets a of X, there exists an open set b of X such that Cl(a)⊆b
 - X is κ-normal iff every two disjoint regular closed sets of X can be separated by two disjoint open sets of X

- Some topological notions
 - Let X be a topological space
 - X is connected iff X cannot be represented by a sum of two disjoint nonempty open sets of X
 - X is semiregular iff X has a closed base of regular closed sets
 - X is weakly regular iff X is semiregular and for all open sets a of X, there exists an open set b of X such that Cl(a)⊆b
 - X is $\underline{\kappa}$ -normal iff every two disjoint regular closed sets of X can be separated by two disjoint open sets of X

- Some topological notions
 - Let X be a topological space
 - Lemma:
 - **1.** X is connected iff RC(X) satisfies the axiom (CON)
 - (CON) If $a \neq 0$ and $a^* \neq 0$ then aCa^*
 - 2. If X is semiregular than X is weakly regular iff RC(X) satisfies the axiom (EXT)
 - (EXT) If $a \neq 1$ then there exists $b \neq 0$ such that $\neg(aCb)$
 - 3. X is κ -normal iff RC(X) satisfies the axiom (NOR)
 - (NOR) If $\neg(aCb)$ then there exists c such that $\neg(aCc)$ and $\neg(c^*Cb)$

- Topological semantics (definition)
 - Valuations in a topological space X
 - Functions v assigning to each Boolean variable p a regular closed set v(p) of X
 - $\underline{v}(0) ::= \emptyset, \underline{v}(p) ::= v(p), \underline{v}(a^*) ::= Cl(X \underline{v}(a)), \underline{v}(a \cup b) ::= Cl(Int(\underline{v}(a) \cup \underline{v}(b)))$
 - Models over a topological space X
 - M = (X,v)
 - Truth of modal formulas in a model M = (X,v)
 - $M \mid = (a \le b) \text{ iff } \underline{v}(a) \subseteq \underline{v}(b), M \mid = (aCb) \text{ iff } \underline{v}(a) \cap \underline{v}(b) \neq \emptyset$
 - Not $M \mid = \bot$, $M \mid = \neg \phi$ iff not $M \mid = \phi$, $M \mid = \phi \lor \psi$ iff $M \mid = \phi$ or $M \mid = \psi$

- Topological semantics (example)
 - Let $\boldsymbol{\varphi}$ be the following modal formula
 - $(p \neq 0) \land (q \neq 0) \land (r \neq 1) \land ((p \cup q) = r) \land (p \neq r) \land (q \neq r) \land \neg (pCr^*) \land \neg (qCr^*)$
 - $-\phi$ is true in the following model

 $-\phi$ is false in all connected models

- Modal logics of classes of topological spaces
 - Logic of a class Θ of topological spaces
 - Set $L(\Theta)$ of all modal formulas true in Θ
 - Lemma: If $\Theta_1 \subseteq \Theta_2$ then $L(\Theta_2) \subseteq L(\Theta_1)$.
 - Θ_{all} : class of all topological spaces
 - Θ_{con} : class of all connected topological spaces
 - Lemma (soundness of PWRCC and PWRCC_{CON} with respect to topological semantics):
 - 1. All theorems of PWRCC are true in the class Θ_{all} .
 - 2. All theorems of PWRCC_{CON} are true in the class Θ_{con} .

- Canonical topological models
 - Let L be an axiomatic extension of PWRCC and S be a maximal L-theory
 - S-clan
 - Set Γ of boolean terms containing 1 and such that
 - 1. If $a \in \Gamma$ and $a \leq_S b$ then $b \in \Gamma$
 - 2. If $a \cup b \in S$ then $a \in \Gamma$ or $b \in \Gamma$
 - 3. If $a \in \Gamma$ and $b \in \Gamma$ then $(aCb) \in S$
 - Maximal S-clan
 - S-clan maximal with respect to set-inclusion

- Canonical topological models
 - Let L be an axiomatic extension of PWRCC, S be a maximal L-theory and X_S be the set of all S-clans
 - Lemma (clan's characterization of C and ≤):
 - 1. $(a \le b) \in S$ iff for all $\Gamma \in X_S$, if $a \in \Gamma$ then $b \in \Gamma$.
 - 2. (aCb) \in S iff for some $\Gamma \in X_S$ we have a $\in \Gamma$ and b $\in \Gamma$.

- Canonical topological models
 - Let L be an axiomatic extension of PWRCC, S be a maximal L-theory and X_S be the set of all S-clans
 - Define a topology in X_s taking the following subsets (for each Boolean terms a) as a basis for the closed sets
 - $\quad \{\Gamma {\in} X_S {:} a {\in} \Gamma\}$
 - Canonical topological model $M_s = (X_s, v_s)$
 - $\quad v_{S}(p) ::= \{\Gamma {\in} X_{S} {:} p {\in} \Gamma\}$
 - Lemma (truth lemma for the topological semantics):
 - 1. $\underline{\mathbf{v}}_{\mathbf{S}}(\mathbf{a}) ::= \{ \Gamma \in \mathbf{X}_{\mathbf{S}} : \mathbf{a} \in \Gamma \}.$
 - 2. $M_{S} \models \phi$ iff $\phi \in S$.

- Canonical topological models
 - Lemma (topological canonicity of connectedness): The following conditions are equivalent:
 - **1.** The axiom (Con) is a theorem of L.
 - 2. All canonical topological spaces of L are connected.

- Canonical topological models
 - Lemma (topological canonicity of extensionality): If L
 contains the rule (Ext) then all canonical topological spaces
 of L are extensional.
 - Lemma (topological canonicity of normality): If L contains the rule (Nor) then all canonical topological spaces of L are κ-normal.

- Completeness theorems with respect to topological semantics
 - We associate to each logic related to RCC a class of topological spaces
 - **PWRCC** •

- All topological spaces
- PWRCC_{EXT} All weakly regular topological spaces •
- PWRCC_{NOR} •
- PWRCC_{EXT,NOR} •
- **PWRCC**_{CON} •
- PWRCC_{CON,EXT} •
- PWRCC_{CON.NOR} •
- PWRCC_{CON,EXT,NOR} • spaces

- All κ -normal topological spaces
 - All κ -normal weakly regular topological spaces
 - All connected topological spaces
 - All weakly regular connected topological spaces
 - All κ -normal connected topological spaces
 - All κ -normal weakly regular connected topological

- Completeness theorems with respect to topological semantics
 - Theorem: The following are equivalent for all modal formulas φ:

 - ϕ is true in all compact T_0 semiregular L-spaces.
 - Theorem: The following are equivalent for all sets S of modal formulas:
 - S is consistent in L.
 - S has a model in some L-space.
 - S has a model in some compact T₀ semiregular L-space.

Conclusion

Conclusion

- Concluding remarks
 - New kinds of modal logics
 - Discrete models of spatial regions
 - Topological models of spatial regions
 - Two kinds of semantics
 - Relational Kripke-style
 - Topological
Conclusion

- Concluding remarks
 - Relational semantics
 - General definability
 - Sahlqvist's like theory
 - Topological semantics
 - Definability theory
 - Filtration
 - Canonicity

Conclusion

- Future work
 - Variants of part-of and contact in model M = (W,R,v)
 - Part-of: M $| = (a \le b)$ iff $\underline{v}(a) \subseteq \langle R \rangle \underline{v}(b)$ $\underline{v}(a) \subseteq \underline{v}(b)$ $\underline{v}(a) \subseteq [R] \underline{v}(b)$ • Contact: M | = (aCb) iff $\underline{v}(a) \cap \langle R \rangle \underline{v}(b) \neq \emptyset$ $\underline{v}(a) \cap \underline{v}(b) \neq \emptyset$ $\underline{v}(a) \cap [R] \underline{v}(b) \neq \emptyset$

weak part-of
part-of
non-tangential inclusion
weak overlap
overlap
strong overlap

Conclusion

- Future work
 - Weaken the Boolean base
 - Drop the Boolean complement
 - Replace the Boolean axioms with axioms for distributive lattices
 - Introduction of n-ary adjacency relations
 - Relational semantics
 - $C(a_1,...,a_n)$ iff for some $x_1 \in W$, ..., $x_n \in W$ we have $x_1 \in v(a_1)$, ..., $x_n \in v(a_n)$ and $R(x_1,...,x_n)$
 - Topological semantics
 - $C(a_1,...,a_n)$ iff $v(a_1) \cap ... \cap v(a_n) \neq \emptyset$

Selected references

- 1. Cohn, A., Hazarika, S. *Qualitative spatial representation and reasoning*. Fundamenta Informaticæ (2001).
- 2. Dimov, G., Vakarelov, D. *Contact algebras and region-based theory of space: a proximity approach I.* Fundamenta Informaticæ (2006).
- 3. Düntsch, I., Winter, M. *A representation theorem for Boolean contact algebras*. Theoretical Computer Science (2005).
- 4. Galton, A. *The mereotopology of discrete spaces*. COSIT 1999.
- 5. Lutz, C., Wolter, F. *Modal logics of topological relations*. Logical Methods in Computer Science (2006).
- 6. Randell, D., Cui, Z., Cohn, A. A spatial logic based on regions and connection. KR 1992.
- 7. Stell, J. *Boolean contact algebras: a new approach to the region connection calculus.* Artificial Intelligence (2000).
- 8. Wolter, F., Zakharyaschev, M. Spatial representation and reasoning in RCC-8 with Boolean region terms. ECAI 2000.