Randomness notions and partial relativization

George Barmpalias, Joseph S. Miller, André Nies

Wellington/Wisconsin/Auckland

Sofia, August 2009

Plan of the talk

- Formalizing randomness
- Between 1-randomness and 2-randomness
- Lifting randomness via oracles
 - ... and their computability-theoretic counterparts
 - ▶ Randomness reducibilities \leq_{LR} , \leq_{W2R}
 - Weak 2-randomness in between
 - Extras: recent work on weakly 2-randoms

Randomness notions

 Martin-Löf randomness is the most common formalization of randomness

 Certain criticisms have supported stronger notions (2-randomness, weak 2-randomness etc.)

(left c.e. reals, superlow and other 'effective' reals can be Martin-Löf random)

 Martin-Löf randomness interacts best with computability theoretic notions.

Aim of this work

- (1) Study randomness between Martin-Löf randomness and 2-randomness.
- (2) Provide new interactions of these with computability theory.

Formalizing randomness

- Random sequences should have no special properties
- Random sequences do not belong to certain null sets
- They pass a certain class of statistical sets

Martin-Löf 's abstract approach

Fix a countable collection of null sets.

Every sequence that does not belong to any of those sets is called random.

Random strings have measure 1.

Some randomness notions

▶ Martin-Löf randomness: effectively G_{δ} sets (Π_2^0 classes) $\cap_i V_i$ such that $\mu V_i < 2^{-i}$.

Martin-Löf randomness relative to X: replace Π⁰₂ with Π⁰₂[A]

2-randomness: $A = \emptyset'$

Weak 2-randomness: Π⁰₂ null sets

Weak 1-randomness: Π⁰₁ null sets

Schnorr randomness: Π_2^0 null sets $\cap_i V_i$ such that $\mu V_i = 2^{-i}$.

Randomness notions and symbols

Martin-Löf randomnessMLweak randomness relative to \emptyset' Kurtz[\emptyset']weak 2-randomnessW2RSchnorr random relative to \emptyset' SR[\emptyset']2-randomnessML[\emptyset']

Strength of notions

$\mathsf{ML}[\emptyset'] \Rightarrow \mathsf{SR}[\emptyset'] \Rightarrow \mathsf{W2R} \Rightarrow \mathsf{Kurtz}[\emptyset'] \cap \mathsf{ML} \Rightarrow \mathsf{ML}$

Strength of notions

$\mathsf{ML}[\emptyset'] \Rightarrow \mathsf{SR}[\emptyset'] \Rightarrow \mathsf{W2R} \Rightarrow \mathsf{Kurtz}[\emptyset'] \cap \mathsf{ML} \Rightarrow \mathsf{ML}$

None of these implications can be reversed.

Lifting randomness via relativization

- Given two classes \mathcal{M} and \mathcal{N} , define High $(\mathcal{M}, \mathcal{N})$ to be the class containing all oracles A such that $\mathcal{M}^A \subseteq \mathcal{N}$.
- The class of oracles which can lift randomness \mathcal{M} to \mathcal{N} .
- For instance, High(ML, SR[Ø']) is the set of oracles A such that each set that is Martin-Löf random in A is already SR[Ø'].

Computability-theoretic charact. of $High(\mathcal{M}, \mathcal{N})$

Example:

Theorem (Kjos-Hanssen/Miller/Solomon) Martin-Löf randomness relative to an oracle A is 2-randomness iff A computes an almost everywhere dominating function. Computability-theoretic charact. of $High(\mathcal{M}, \mathcal{N})$

Example:

Theorem (Kjos-Hanssen/Miller/Solomon) Martin-Löf randomness relative to an oracle A is 2-randomness iff A computes an almost everywhere dominating function.

 $A \in \text{High}(ML, ML[\emptyset'])$ iff A computes an almost everywhere dominating function.

Partial relativization

We obtain further characterizations via partial relativizations of standard notions.

 partial relativization was introduced by Simpson in his investigations of mass problems

...and has become a useful tool in computability and randomness

Example:

A full relativization of 'low for random' gives:

A is low for random relative to B if every B-random is $A \oplus B$ -random.

However a more useful and meaningful relation is

every B-random is A-random

We only relativize certain components of a notion.

Computability and partial relativization

▶ *f* is diagonally non-computable if $f(i) \not\simeq \varphi_i(i)$ for all $i \in \mathbb{N}$.

C is d.n.c. by A if it computes a d.n.c.[A] function

► *C* is **c.e. traceable by** *A* if for every $f \leq_T C$ there is *A*-c.e. family (V_i) with

 $f(i) \in V_i$ and $|V_i|$ computably bounded

Randomness vs computability theoretic notions

(a)	$\textbf{\textit{A}} \in High(ML,Kurtz[\emptyset'])$	\emptyset' is non-d.n.c. by A
(b)	$A \in High(ML,W2R)$	
(c)	$\textit{A} \in \textsf{High}(\textsf{ML}, \textsf{SR}[\emptyset'])$	\emptyset' is c.e. traceable by A
(d)	$\textit{A} \in \textit{High}(\textit{W2R},\textit{ML}[\emptyset'])$	A is u.a.e. dominating
(e)	$\textit{A} \in \textit{High}(ML, ML[\emptyset'])$	
(f)	$A \in High(Kurtz, ML)$	impossible

Randomness reducibilities

• A natural extension of Turing reducibility is \leq_{LR}

A ≤_{LR} B if every Martin-Löf random relative to B is also random relative to A

• ... if $B \in \text{High}(ML, ML^A)$

Intuitively, B can derandomize all sequences that A can.

A ≡_{LR} B if the class of Martin-Löf randoms relative to A coincides with the class of Martin-Löf randoms relative to B

Reducibility associated with weak 2-randomness

The reducibility associated with weak 2-randomness is \leq_{W2R} .

► A ≤_{W2R} B if every weakly 2-random relative to B is also weakly 2-random relative to A.

Open problem

Proposition (Kjos-Hanssen, Kučera, Nies) $A \leq_{LR} B$ iff every $\Sigma_1^0(A)$ class of measure < 1 is contained in a $\Sigma_1^0(B)$ class of measure < 1.

Open problem

Proposition (Kjos-Hanssen, Kučera, Nies) $A \leq_{LR} B$ iff every $\Sigma_1^0(A)$ class of measure < 1 is contained in a $\Sigma_1^0(B)$ class of measure < 1.

Is there an analogous characterization for $A \leq_{W2R} B$?

Open problem

Proposition (Kjos-Hanssen, Kučera, Nies) $A \leq_{LR} B$ iff every $\Sigma_1^0(A)$ class of measure < 1 is contained in a $\Sigma_1^0(B)$ class of measure < 1.

Is there an analogous characterization for $A \leq_{W2R} B$?

Is $A \leq_{W2R} B$ equivalent to every $\Pi_2^0(A)$ null class is contained in some $\Pi_2^0(B)$ null class?

\leq_{LR} versus \leq_{W2R}

Theorem

- $\blacktriangleright \leq_{W2R}$ implies \leq_{LR}
- . They coincide on the initial segment of low for Ω sets
 - They coincide on the Δ_2^0 sets.
 - They do not coincide on the Δ_3^0 sets.
 - $\blacktriangleright \equiv_{W2R}$ and \equiv_{LR} coincide.

Weak 2-randomness between ML and $ML[\emptyset']$

1-random
$$\Rightarrow$$
 weak 2-random \Rightarrow 2-random

Informal question:

Is weak 2-randomness closer to to 1-randomness or 2-randomness?

Weak 2-randomness between ML and $ML[\emptyset']$

1-random
$$\Rightarrow$$
 weak 2-random \Rightarrow 2-random

Informal question:

Is weak 2-randomness closer to to 1-randomness or 2-randomness?

The definition of W2R is a slight modification of the definition of ML.

Closer to 1-randomness: results

A ∈ W2R iff A ∈ ML and forms a minimal pair with Ø' (Hirschfeldt/Miller)

▶ Lifting ML to W2R is much easier than lifting W2R to ML[∅']

... making \emptyset' non-dnc by A is easier than making A a.e. dominating

... making a Δ_2^0 set non-low is easier than making it a.e. dominating.

► There is a weakly 2-random which is K-trivial relative to Ø'.

Two open problems from Nies' book

Problem 8.2.14 Is every weakly 2-random array computable?

Problem 3.6.9 To what extend does van Lambalgen's theorem hold for weak 2-randomness?

Two open problems from Nies' book

Problem 8.2.14 Is every weakly 2-random array computable?

Problem 3.6.9 To what extend does van Lambalgen's theorem hold for weak 2-randomness?

Recent work of Barmpalias/Downey/Ng answers these questions

Theorem (Barmpalias/Downey/Ng)

For every function f there is a weakly 2-random X and a function $g \leq_T X$ which is not dominated by f.

Corollary (Barmpalias/Downey/Ng) There is an array non-computable weakly 2-random set.

Jumps of randoms

- Recent work includes jump inversion theorems for weakly 2-randoms and 2-randoms
- ... aiming at a full characterization of their jumps
- this work has the following corollary:

Theorem (Barmpalias/Downey/Ng)

If A is weakly 2-random relative to B and B is weakly 2-random then $A \oplus B$ is weakly 2-random. But not vise-versa.

References

Barmpalias/Miller/Nies, Randomness notions and partial relativization, submitted.

Nies, Computability and Randomness, Oxford Press 2009

Downey and Hirschfeldt, Algorithmic randomness and complexity, Springer-Verlag, to appear.

Webpage: http://www.barmpalias.net