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Plan of the talk

I Formalizing randomness
I Between 1-randomness and 2-randomness
I Lifting randomness via oracles
I . . . and their computability-theoretic counterparts
I Randomness reducibilities ≤LR, ≤W2R

I Weak 2-randomness in between
I Extras: recent work on weakly 2-randoms



Randomness notions

I Martin-Löf randomness is the most common formalization
of randomness

I Certain criticisms have supported stronger notions
(2-randomness, weak 2-randomness etc.)

(left c.e. reals, superlow and other ‘effective’ reals can be
Martin-Löf random)

I Martin-Löf randomness interacts best with computability
theoretic notions.



Aim of this work

(1) Study randomness between Martin-Löf randomness and
2-randomness.

(2) Provide new interactions of these with computability theory.



Formalizing randomness

I Random sequences should have no special properties

I Random sequences do not belong to certain null sets

I They pass a certain class of statistical sets



Martin-Löf ’s abstract approach

I Fix a countable collection of null sets.

I Every sequence that does not belong to any of those sets
is called random.

I Random strings have measure 1.



Some randomness notions

I Martin-Löf randomness: effectively Gδ sets (Π0
2 classes)

∩iVi such that µVi < 2−i .

I Martin-Löf randomness relative to X : replace Π0
2 with Π0

2[A]

I 2-randomness: A = ∅′

I Weak 2-randomness: Π0
2 null sets

I Weak 1-randomness: Π0
1 null sets

I Schnorr randomness: Π0
2 null sets ∩iVi such that

µVi = 2−i .



Randomness notions and symbols

Martin-Löf randomness ML
weak randomness relative to ∅′ Kurtz[∅′]
weak 2-randomness W2R
Schnorr random relative to ∅′ SR[∅′]
2-randomness ML[∅′]



Strength of notions

ML[∅′]⇒ SR[∅′]⇒W2R⇒ Kurtz[∅′] ∩ML⇒ ML

None of these implications can be reversed.
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Lifting randomness via relativization

I Given two classesM and N , define High(M,N ) to be the
class containing all oracles A such thatMA ⊆ N .

I The class of oracles which can lift randomnessM to N .

I For instance, High(ML,SR[∅′]) is the set of oracles A such
that each set that is Martin-Löf random in A is already
SR[∅′].



Computability-theoretic charact. of High(M,N )

Example:

Theorem (Kjos-Hanssen/Miller/Solomon)
Martin-Löf randomness relative to an oracle A is 2-randomness
iff A computes an almost everywhere dominating function.

A ∈ High(ML,ML[∅′]) iff A computes an almost
everywhere dominating function.
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Partial relativization

I We obtain further characterizations via partial
relativizations of standard notions.

I partial relativization was introduced by Simpson in his
investigations of mass problems

I . . . and has become a useful tool in computability and
randomness



Example:

A full relativization of ‘low for random’ gives:

A is low for random relative to B if every B-random is
A⊕ B-random.

However a more useful and meaningful relation is

every B-random is A-random

We only relativize certain components of a notion.



Computability and partial relativization

I f is diagonally non-computable if f (i) 6' ϕi(i) for all i ∈ N.

I C is d.n.c. by A if it computes a d.n.c.[A] function

I C is c.e. traceable by A if for every f ≤T C there is A-c.e.
family (Vi) with

f (i) ∈ Vi and |Vi | computably bounded



Randomness vs computability theoretic notions

(a) A ∈ High(ML,Kurtz[∅′])
∅′ is non-d.n.c. by A

(b) A ∈ High(ML,W2R)

(c) A ∈ High(ML,SR[∅′]) ∅′ is c.e. traceable by A

(d) A ∈ High(W2R,ML[∅′])
A is u.a.e. dominating

(e) A ∈ High(ML,ML[∅′])

(f) A ∈ High(Kurtz,ML) impossible



Randomness reducibilities

I A natural extension of Turing reducibility is ≤LR

I A ≤LR B if every Martin-Löf random relative to B is also
random relative to A

I . . . if B ∈ High(ML,MLA)

I Intuitively, B can derandomize all sequences that A can.

I A ≡LR B if the class of Martin-Löf randoms relative to A
coincides with the class of Martin-Löf randoms relative to B



Reducibility associated with weak 2-randomness

I The reducibility associated with weak 2-randomness is
≤W2R.

I A ≤W2R B if every weakly 2-random relative to B is also
weakly 2-random relative to A.



Open problem

Proposition (Kjos-Hanssen, Kučera, Nies)
A ≤LR B iff every Σ0

1(A) class of measure < 1 is contained in a
Σ0

1(B) class of measure < 1.

Is there an analogous characterization for A ≤W2R B?

Is A ≤W2R B equivalent to every Π0
2(A) null class is

contained in some Π0
2(B) null class?
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≤LR versus ≤W2R

Theorem
I ≤W2R implies ≤LR

I They coincide on the initial segment of low for Ω sets

I They coincide on the ∆0
2 sets.

I They do not coincide on the ∆0
3 sets.

I ≡W2R and ≡LR coincide.



Weak 2-randomness between ML and ML[∅′]

1-random ⇒ weak 2-random ⇒ 2-random

Informal question:

Is weak 2-randomness closer to to 1-randomness or
2-randomness?

The definition of W2R is a slight modification of the
definition of ML.
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Closer to 1-randomness: results

I A ∈W2R iff A ∈ ML and forms a minimal pair with ∅′
(Hirschfeldt/Miller)

I Lifting ML to W2R is much easier than lifting W2R to ML[∅′]

. . . making ∅′ non-dnc by A is easier than making A a.e.
dominating

. . . making a ∆0
2 set non-low is easier than making it a.e.

dominating.

I There is a weakly 2-random which is K-trivial relative to ∅′.



Two open problems from Nies’ book

Problem 8.2.14 Is every weakly 2-random array
computable?

Problem 3.6.9 To what extend does van Lambalgen’s
theorem hold for weak 2-randomness?

Recent work of Barmpalias/Downey/Ng answers these
questions
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Theorem (Barmpalias/Downey/Ng)
For every function f there is a weakly 2-random X and a
function g ≤T X which is not dominated by f .

Corollary (Barmpalias/Downey/Ng)
There is an array non-computable weakly 2-random set.



Jumps of randoms

I Recent work includes jump inversion theorems for weakly
2-randoms and 2-randoms

I . . . aiming at a full characterization of their jumps
I this work has the following corollary:

Theorem (Barmpalias/Downey/Ng)
If A is weakly 2-random relative to B and B is weakly 2-random
then A⊕ B is weakly 2-random. But not vise-versa.
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