Ultrapowers of operator algebras

Ilijas Farah

York University

Sofia, LC09, August 4, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition An ultrafilter is a nonprincipal ultrafilter on \mathbb{N} .

Definition An ultrafilter is a nonprincipal ultrafilter on \mathbb{N} . On $A^{\mathbb{N}}$ define $\sim_{\mathcal{U}}$ by

$$\vec{x} \sim_{\mathcal{U}} \vec{y}$$
 iff $(\mathcal{U}n)x(n) = y(n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $A^{\mathbb{N}}/\sim_{\mathcal{U}}$ is the *ultrapower* of *A*.

Definition

An ultrafilter is a nonprincipal ultrafilter on $\ensuremath{\mathbb{N}}.$

On $\mathcal{A}^{\mathbb{N}}$ define $\sim_{\mathcal{U}}$ by

$$\vec{x} \sim_{\mathcal{U}} \vec{y}$$
 iff $(\mathcal{U}n)x(n) = y(n)$

 $A^{\mathbb{N}}/\sim_{\mathcal{U}}$ is the *ultrapower* of *A*. Applications in logic, nonstandard analysis, number theory, combinatorics, geometry of Banach spaces,...

Definition

An ultrafilter is a nonprincipal ultrafilter on \mathbb{N} .

On $A^{\mathbb{N}}$ define $\sim_{\mathcal{U}}$ by

$$\vec{x} \sim_{\mathcal{U}} \vec{y}$$
 iff $(\mathcal{U}n)x(n) = y(n)$

 $A^{\mathbb{N}}/\sim_{\mathcal{U}}$ is the *ultrapower* of *A*.

Applications in logic, nonstandard analysis, number theory, combinatorics, geometry of Banach spaces,...

Theorem

Assume the Continuum Hypothesis, CH. If A is a structure of cardinality $\leq 2^{\aleph_0}$ then all ultrapowers of A are isomorphic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Dow, Shelah, 1984)

IF CH fails and A is an infinite linear ordering then A has nonisomorphic ultrapowers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Dow, Shelah, 1984)

IF CH fails and the theory of A is unstable then A has nonisomorphic ultrapowers.

Theorem (Dow, Shelah, 1984)

IF CH fails and the theory of A is unstable then A has nonisomorphic ultrapowers.

Theorem ()

Assume CH fails. For a countable model A the following are equivalent.

- 1. All ultrapowers of A are isomorphic.
- 2. The theory of A is stable.

Theorem (Dow, Shelah, 1984)

IF CH fails and the theory of A is unstable then A has nonisomorphic ultrapowers.

Theorem (I. Farah-B. Hart, 2009)

Assume CH fails. For a countable model A the following are equivalent.

- 1. All ultrapowers of A are isomorphic.
- 2. The theory of A is stable.

H: a complex Hilbert space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- H: a complex Hilbert space
- $(\mathcal{B}(H))$): the algebra of bounded linear operators on H

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

H: a complex Hilbert space

 $(\mathcal{B}(\mathcal{H}),+,\cdot,^*,\|\cdot\|)$: the algebra of bounded linear operators on \mathcal{H}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

H: a complex Hilbert space $(\mathcal{B}(H), +, \cdot, ^*, \|\cdot\|)$: the algebra of bounded linear operators on *H* A *C*-algebra* is a subalgebra of $\mathcal{B}(H)$ closed in the norm topology.

H: a complex Hilbert space

 $(\mathcal{B}(\mathcal{H}),+,\cdot,^*,\|\cdot\|){:}$ $\,$ the algebra of bounded linear operators on \mathcal{H}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A C^* -algebra is a subalgebra of $\mathcal{B}(H)$ closed in the norm topology.

Examples: (i) C([0, 1]). (ii) $M_n(\mathbb{C})$.

H: a complex Hilbert space

 $(\mathcal{B}(\mathcal{H}),+,\cdot,^*,\|\cdot\|)$: the algebra of bounded linear operators on \mathcal{H}

A C^* -algebra is a subalgebra of $\mathcal{B}(H)$ closed in the norm topology.

Examples: (i) C([0,1]). (ii) $M_n(\mathbb{C})$.

A von Neumann algebra is subalgebra of $\mathcal{B}(H)$ closed in the weak operator topology.

It is *tracial* if there is $\tau: M \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$, it is continuous, and *faithful*: $\tau(a^*a) = 0$ if and only if a = 0.

H: a complex Hilbert space

 $(\mathcal{B}(\mathcal{H}),+,\cdot,^*,\|\cdot\|)$: the algebra of bounded linear operators on \mathcal{H}

A C^* -algebra is a subalgebra of $\mathcal{B}(H)$ closed in the norm topology.

Examples: (i) C([0,1]). (ii) $M_n(\mathbb{C})$.

A von Neumann algebra is subalgebra of $\mathcal{B}(H)$ closed in the weak operator topology.

It is *tracial* if there is $\tau: M \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$, it is continuous, and *faithful*: $\tau(a^*a) = 0$ if and only if a = 0. Examples: (i) $L^{\infty}([0, 1], \lambda), \tau(f) = \int f d\lambda$. (ii) $M_n(\mathbb{C}), \tau(a) = \frac{1}{n} \operatorname{trace}(a)$.

$$\ell^{\infty}(M) = \{ \vec{a} \in M^{\mathbb{N}} : \sup_{n} \|a_n\| < \infty \}.$$

$$\ell^{\infty}(M) = \{ \vec{a} \in M^{\mathbb{N}} : \sup_{n} \|a_n\| < \infty \}.$$

$$c_{\mathcal{U}}(M) = \{a \in \ell^{\infty}(M) : \lim_{n \to \mathcal{U}} ||a_n|| = 0\}$$

$$\ell^{\infty}(M) = \{ \vec{a} \in M^{\mathbb{N}} : \sup_{n} \|a_n\| < \infty \}.$$

$$c_{\mathcal{U}}(M) = \{a \in \ell^{\infty}(M) : \lim_{n \to \mathcal{U}} \|a_n\| = 0\}$$

The ultrapower

$$M^{\mathcal{U}} = \ell^{\infty}(M)/c_{\mathcal{U}}(M)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is a C*-algebra.

$$\ell^{\infty}(M) = \{ \vec{a} \in M^{\mathbb{N}} : \sup_{n} \|a_n\| < \infty \}.$$

$$c_{\mathcal{U}}(M) = \{a \in \ell^{\infty}(M) : \lim_{n \to \mathcal{U}} \|a_n\| = 0\}$$

The ultrapower

$$M^{\mathcal{U}} = \ell^{\infty}(M)/c_{\mathcal{U}}(M)$$

is a C*-algebra.

Applications in classification of purely infinite C*-algebras (Kirchberg–Phillips),

Ultrapowers of C*-algebras and II₁ factors

$$\ell^{\infty}(M) = \{ \vec{a} \in M^{\mathbb{N}} : \sup_{n} \|a_n\| < \infty \}.$$

$$c_{\mathcal{U}}(M) = \{a \in \ell^{\infty}(M) : \lim_{n \to \mathcal{U}} \tau(a_n^* a_n) = 0\}$$

The ultrapower

$$M^{\mathcal{U}} = \ell^{\infty}(M)/c_{\mathcal{U}}(M)$$

is a tracial von Neumann algebra.

Applications in classification of purely infinite C*-algebras (Kirchberg–Phillips),

Ultrapowers of C*-algebras and II_1 factors

$$\ell^{\infty}(M) = \{ \vec{a} \in M^{\mathbb{N}} : \sup_{n} \|a_n\| < \infty \}.$$

$$c_{\mathcal{U}}(M) = \{a \in \ell^{\infty}(M) : \lim_{n \to \mathcal{U}} \tau(a_n^* a_n) = 0\}$$

The ultrapower

$$M^{\mathcal{U}} = \ell^{\infty}(M)/c_{\mathcal{U}}(M)$$

is a tracial von Neumann algebra.

Applications in classification of purely infinite C*-algebras (Kirchberg–Phillips), classification of II_1 factors (McDuff, Connes).

Relative commutant

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$M \hookrightarrow M^{\mathcal{U}}$ via the diagonal embedding $a \mapsto (a, a, a, \dots)/\mathcal{U}$.

Relative commutant

 $M \hookrightarrow M^{\mathcal{U}}$ via the diagonal embedding $a \mapsto (a, a, a, \dots)/\mathcal{U}$. The relative commutant:

$$F_{\mathcal{U}}(M) = \{a \in M^{\mathcal{U}} : ab = ba \text{ for all } b \in M\}.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(also denoted by $M' \cap M^{\mathcal{U}}$).

Relative commutant

 $M \hookrightarrow M^{\mathcal{U}}$ via the diagonal embedding $a \mapsto (a, a, a, \dots)/\mathcal{U}$. The relative commutant:

$$F_{\mathcal{U}}(M) = \{a \in M^{\mathcal{U}} : ab = ba ext{ for all } b \in M\}.$$

(also denoted by $M' \cap M^{\mathcal{U}}$).

Question (Kirchberg, 2002) Is $F_{\mathcal{U}}(\mathcal{B}(H)) = \mathbb{C} \cdot 1$? The following (until further notice) is joint with N. Christopher Phillips and Juris Steprāns

Theorem (FPS)

Assume \mathcal{V} is a selective ultrafilter. Then for $a \in \mathcal{B}(H)^{\mathcal{V}}$ the following are equivalent.

1. $a \in \mathcal{B}(H)'$.

The following (until further notice) is joint with N. Christopher Phillips and Juris Steprāns

Theorem (FPS)

Assume \mathcal{V} is a selective ultrafilter. Then for $a \in \mathcal{B}(H)^{\mathcal{V}}$ the following are equivalent.

- 1. $a \in \mathcal{B}(H)'$.
- 2. a has a representing sequence (b_n) that is a norm-central sequence:

$$\lim_n \|[c, b_n]\| = 0 \text{ for all } c \in M.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition (FPS, Sherman, folklore(?)) $\mathcal{B}(H)$ has no nontrivial norm-central sequences.

Proposition (FPS, Sherman, folklore(?)) $\mathcal{B}(H)$ has no nontrivial norm-central sequences. Corollary (FPS) Assume \mathcal{V} is a selective ultrafilter. Then $F_{\mathcal{V}}(\mathcal{B}(H)) = \mathbb{C}$.

Proposition (FPS, Sherman, folklore(?))

 $\mathcal{B}(H)$ has no nontrivial norm-central sequences.

Corollary (FPS)

Assume \mathcal{V} is a selective ultrafilter. Then $F_{\mathcal{V}}(\mathcal{B}(H)) = \mathbb{C}$.

Proposition

The Continuum Hypothesis, CH, implies the existence of a selective ultrafilter.

Proposition (FPS, Sherman, folklore(?))

 $\mathcal{B}(H)$ has no nontrivial norm-central sequences.

Corollary (FPS)

Assume \mathcal{V} is a selective ultrafilter. Then $F_{\mathcal{V}}(\mathcal{B}(H)) = \mathbb{C}$.

Proposition

The Continuum Hypothesis, CH, implies the existence of a selective ultrafilter.

Corollary (FPS) CH implies that $F_{\mathcal{V}}(\mathcal{B}(H))$ is trivial for some \mathcal{V} .

A solution to $\frac{1}{4}$ of Kirchberg's problem

Proposition (FPS, Sherman, folklore(?))

 $\mathcal{B}(H)$ has no nontrivial norm-central sequences.

Corollary (FPS)

Assume \mathcal{V} is a selective ultrafilter. Then $F_{\mathcal{V}}(\mathcal{B}(H)) = \mathbb{C}$.

Proposition

The Continuum Hypothesis, CH, implies the existence of a selective ultrafilter.

Corollary (FPS) CH implies that $F_{\mathcal{V}}(\mathcal{B}(H))$ is trivial for some \mathcal{V} .

FDD von Neumann algebras

Fix a decomposition

$$\vec{E} = \langle E_i : i \in \mathbb{N} \rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

of H into finite-dimensional orthogonal subspaces.

FDD von Neumann algebras

Fix a decomposition

$$\vec{E} = \langle E_i : i \in \mathbb{N} \rangle$$

of H into finite-dimensional orthogonal subspaces. Let

$$\mathcal{D}[\vec{E}] = \{ a \in \mathcal{B}(H) : (\forall i) a[E_i] \subseteq E_i \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

FDD von Neumann algebras

Fix a decomposition

$$\vec{E} = \langle E_i : i \in \mathbb{N} \rangle$$

of H into finite-dimensional orthogonal subspaces. Let

$$\mathcal{D}[\vec{E}] = \{ a \in \mathcal{B}(H) : (\forall i) a[E_i] \subseteq E_i \}.$$

Lemma

1. If \vec{E} is coarser than \vec{F} , then $\mathcal{D}[\vec{E}] \supseteq \mathcal{D}[\vec{F}]$. 2. $\bigcup_{\vec{E}} \mathcal{D}[\vec{E}] \neq \mathcal{B}(H)$.

A useful lemma

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma (Farah, 2007) $(\forall a \in \mathcal{B}(H))(\forall \varepsilon > 0)(\exists \vec{E}, \vec{F})$
A useful lemma

Lemma (Farah, 2007) $(\forall a \in \mathcal{B}(H))(\forall \varepsilon > 0)(\exists \vec{E}, \vec{F})$

$$a = a_{\vec{E}} + a_{\vec{F}} + c$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A useful lemma

Lemma (Farah, 2007) $(\forall a \in \mathcal{B}(H))(\forall \varepsilon > 0)(\exists \vec{E}, \vec{F})$ $a = a_{\vec{E}} + a_{\vec{F}} + c$ where $a_{\vec{E}} \in \mathcal{D}[\vec{E}], a_{\vec{F}} \in \mathcal{D}[\vec{F}], c$ is compact and $||c|| < \varepsilon$.

Lemma For any \mathcal{U} we have

$$\mathcal{B}(H)' \cap \mathcal{B}(H)^{\mathcal{U}} = \bigcap_{\vec{E}} \mathcal{D}[\vec{E}]' \cap \mathcal{B}(H)^{\mathcal{U}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lemma For any \mathcal{U} we have

$$\mathcal{B}(H)' \cap \mathcal{B}(H)^{\mathcal{U}} = \bigcap_{\vec{E}} \mathcal{D}[\vec{E}]' \cap \mathcal{B}(H)^{\mathcal{U}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof. \subseteq is trivial.

Lemma For any \mathcal{U} we have

$$\mathcal{B}(H)' \cap \mathcal{B}(H)^{\mathcal{U}} = \bigcap_{\vec{E}} \mathcal{D}[\vec{E}]' \cap \mathcal{B}(H)^{\mathcal{U}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof. \subseteq is trivial. \supseteq : If $a \in LHS$, write $a = a_{\vec{E}} + a_{\vec{F}} + c$.

Lemma For any U we have

$$\mathcal{B}(H)' \cap \mathcal{B}(H)^{\mathcal{U}} = \bigcap_{\vec{E}} \mathcal{D}[\vec{E}]' \cap \mathcal{B}(H)^{\mathcal{U}}.$$

Proof. \subseteq is trivial. \supseteq : If $a \in LHS$, write $a = a_{\vec{E}} + a_{\vec{F}} + c$. For $b \in \mathcal{B}(H)$ we have $\|[b, a]\| = \|[b, c]\| \le \varepsilon \|b\|$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for an arbitrarily small $\varepsilon > 0$.

Flat ultrafilters

Definition (FPS)

An ultrafilter \mathcal{U} is *flat* if there are $h_n \colon \mathbb{N} \searrow [0,1]$ such that

- 1. $h_n(0) = 1$,
- 2. $\lim_{j \to n} h_n(j) = 0$,
- 3. $(\forall f : \mathbb{N} \nearrow \mathbb{N}) \lim_{n \to \mathcal{U}} \|h_n h_n \circ f\|_{\infty} = 0.$

Flat ultrafilters

Definition (FPS)

An ultrafilter \mathcal{U} is *flat* if there are $h_n \colon \mathbb{N} \searrow [0,1]$ such that

- 1. $h_n(0) = 1$,
- 2. $\lim_{j \to n} h_n(j) = 0$,
- 3. $(\forall f : \mathbb{N} \nearrow \mathbb{N}) \lim_{n \to \mathcal{U}} \|h_n h_n \circ f\|_{\infty} = 0.$

For each n,

$$a_n = \sum_j h_n(j) \operatorname{proj}_{\mathbb{C}\xi_j}$$

is in $\mathcal{B}(H)$.

Proposition (FPS) If an ultrafilter \mathcal{U} is flat then $F_{\mathcal{U}}(\mathcal{B}(H)) \neq \mathbb{C}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proposition (FPS) If an ultrafilter \mathcal{U} is flat then $F_{\mathcal{U}}(\mathcal{B}(H)) \neq \mathbb{C}$.

Pf. With

$$\mathbf{a} = (a_n n \in \mathbb{N})/\mathcal{U}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proposition (FPS) If an ultrafilter \mathcal{U} is flat then $F_{\mathcal{U}}(\mathcal{B}(H)) \neq \mathbb{C}$.

Pf. With

 $\mathbf{a}=(a_nn\in\mathbb{N})/\mathcal{U}$ we have $\mathbf{a}\in\mathcal{D}[ec{E}]'$ for all $ec{E}.$ \Box

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The existence of flat ultrafilters

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (FPS)

There exists a flat ultrafilter on some countable set \mathbb{F} .

The existence of flat ultrafilters

Theorem (FPS)

There exists a flat ultrafilter on some countable set \mathbb{F} . **Proof.** Let

$$\mathbb{F} = \{h \colon \mathbb{N} \searrow \mathbb{Q} \cap [0,1] : h(0) = 1, \text{ and } (\forall^{\infty} m)h(m) = 0\}.$$

For $f : \mathbb{N} \nearrow \mathbb{N}$ and $\varepsilon > 0$ let

$$\mathbf{X}_{f,\varepsilon} = \{h \in \mathbb{F} : \|h - h \circ f\|_{\infty} \le \varepsilon.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The existence of flat ultrafilters

Theorem (FPS)

There exists a flat ultrafilter on some countable set \mathbb{F} . **Proof.** Let

$$\mathbb{F} = \{h \colon \mathbb{N} \searrow \mathbb{Q} \cap [0,1] : h(0) = 1, \text{ and } (\forall^{\infty} m)h(m) = 0\}.$$

For $f : \mathbb{N} \nearrow \mathbb{N}$ and $\varepsilon > 0$ let

$$\mathbf{X}_{f,\varepsilon} = \{h \in \mathbb{F} : \|h - h \circ f\|_{\infty} \leq \varepsilon.$$

If $n > 1/\varepsilon$ then

$$h = \chi[0, f(0)) + \frac{n-1}{n} \chi_{[f(0), f^2(0))} + \dots + \frac{1}{n} \chi_{[f^{n-1}(0), f^n(0))}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

belongs to $\mathbf{X}_{f,\varepsilon}$.

Hence each $\mathbf{X}_{f,\varepsilon}$ is infinite, and

$$\mathbf{X}_{f,\varepsilon} \cap \mathbf{X}_{g,\delta} \supseteq \mathbf{X}_{\max(f,g),\min(\varepsilon,\delta)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An ultrafilter on \mathbb{F} containing all $X_{f,\varepsilon}$ is flat.

The solution to Kirchberg's problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (FPS)

1. There is an ultrafilter \mathcal{U} such that $F_{\mathcal{U}}(\mathcal{B}(H)) \neq \mathbb{C}$.

The solution to Kirchberg's problem

Theorem (FPS)

- 1. There is an ultrafilter \mathcal{U} such that $F_{\mathcal{U}}(\mathcal{B}(H)) \neq \mathbb{C}$.
- 2. Assuming CH or Martin's Axiom, there is an ultrafilter \mathcal{U} such that $F_{\mathcal{U}}(\mathcal{B}(H)) = \mathbb{C}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The solution to $\frac{3}{4}$ of Kirchberg's problem

Theorem (FPS)

- 1. There is an ultrafilter \mathcal{U} such that $F_{\mathcal{U}}(\mathcal{B}(H)) \neq \mathbb{C}$.
- 2. Assuming CH or Martin's Axiom, there is an ultrafilter \mathcal{U} such that $F_{\mathcal{U}}(\mathcal{B}(H)) = \mathbb{C}$.

Corollary (FPS)

Assuming CH or Martin's Axiom $F_{\mathcal{U}}(\mathcal{B}(H))$ depends on the choice of the ultrafilter.

The solution to $\frac{3}{4}$ of Kirchberg's problem

Theorem (FPS)

- 1. There is an ultrafilter \mathcal{U} such that $F_{\mathcal{U}}(\mathcal{B}(H)) \neq \mathbb{C}$.
- 2. Assuming CH or Martin's Axiom, there is an ultrafilter \mathcal{U} such that $F_{\mathcal{U}}(\mathcal{B}(H)) = \mathbb{C}$.

Corollary (FPS)

Assuming CH or Martin's Axiom $F_{\mathcal{U}}(\mathcal{B}(H))$ depends on the choice of the ultrafilter.

What about the remaining 1/4 of the problem?

Theorem (Kunen, 1976)

If ZFC is consistent, then so is 'ZFC+there are no selective ultrafilters.'

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What about the remaining 1/4 of the problem?

Theorem (Kunen, 1976)

If ZFC is consistent, then so is 'ZFC+there are no selective ultrafilters.'

We can do with a P-point instead of a selective ultrafilter,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Kunen, 1976)

If ZFC is consistent, then so is 'ZFC+there are no selective ultrafilters.'

We can do with a P-point instead of a selective ultrafilter, but Shelah proved that consistently there are no P-points.

ε -flatness

Definition

An ultrafilter \mathcal{U} is ε -flat for some $\varepsilon > 0$ if there are $h_n \colon \mathbb{N} \searrow [0, 1]$ such that

- 1. $h_n(0) = 1$,
- 2. $\lim_{j \to n} h_n(j) = 0$,
- 3. $(\forall f : \mathbb{N} \nearrow \mathbb{N}) \lim_{n \to \mathcal{U}} \|h_n h_n \circ f\|_{\infty} \leq \varepsilon$.

ε -flatness

Definition

An ultrafilter \mathcal{U} is ε -flat for some $\varepsilon > 0$ if there are $h_n \colon \mathbb{N} \searrow [0, 1]$ such that

- 1. $h_n(0) = 1$,
- 2. $\lim_{j} h_n(j) = 0$, 3. $(\forall f : \mathbb{N} \nearrow \mathbb{N}) \lim_{n \to \mathcal{U}} \|h_n - h_n \circ f\|_{\infty} \le \varepsilon$.

Fact

 \mathcal{U} is flat iff a single sequence (h_n) witnesses ε -flatness of \mathcal{U} for all $\varepsilon > 0$.

Proposition (FS) If U is a P-point then it is not $(1 - \delta)$ -flat for any $\delta > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition (FS)

If \mathcal{U} is a P-point then it is not $(1 - \delta)$ -flat for any $\delta > 0$.

Proposition (FS)

Assume there are no P-points. Then every ultrafilter \mathcal{U} on \mathbb{N} is ε -flat for every $\varepsilon > 0$.

Question

Is there a nonprincipal ultrafilter \mathcal{V} on \mathbb{N} such that $F_{\mathcal{V}}(\mathcal{B}(H)) = \mathbb{C}$? In many models of ZFC the answer is positive.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Is there a nonprincipal ultrafilter \mathcal{V} on \mathbb{N} such that $F_{\mathcal{V}}(\mathcal{B}(H)) = \mathbb{C}$? In many models of ZFC the answer is positive.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

What can be said about the structure of $F_{\mathcal{V}}(\mathcal{B}(H))$ in general?

Question

Is there a nonprincipal ultrafilter \mathcal{V} on \mathbb{N} such that $F_{\mathcal{V}}(\mathcal{B}(H)) = \mathbb{C}$? In many models of ZFC the answer is positive.

Question

What can be said about the structure of $F_{\mathcal{V}}(\mathcal{B}(H))$ in general? Can it be nonabelian?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Question

Is there a nonprincipal ultrafilter \mathcal{V} on \mathbb{N} such that $F_{\mathcal{V}}(\mathcal{B}(H)) = \mathbb{C}$? In many models of ZFC the answer is positive.

Question

What can be said about the structure of $F_{\mathcal{V}}(\mathcal{B}(H))$ in general? Can it be nonabelian?

Question Is $F_{\mathcal{V}}(\mathcal{B}(H)) \neq \mathbb{C}$ equivalent to \mathcal{V} is flat'?

Separable C*-algebras

Question (Kirchberg, 2004)

Does $F_{\mathcal{U}}(M)$ depend on M for a separable C*-algebra M?

Separable C*-algebras

Question (Kirchberg, 2004) Does $F_{\mathcal{U}}(M)$ depend on M for a separable C*-algebra M? Proposition (Ge–Hadwin, 2001) CH implies that for all \mathcal{U} and \mathcal{V} $F_{\mathcal{U}}(M) \cong F_{\mathcal{V}}(M)$

for every separable C*-algebra M.

Theorem (F., 2008) Con(ZFC) implies Con(ZFC+ there are U and V such that

 $F_{\mathcal{U}}(M) \ncong F_{\mathcal{V}}(M)$

for some separable C^* -algebra M).

A consequence of the Dow-Shelah result

Theorem (F., 2008) \neg CH implies there are U and V such that

 $F_{\mathcal{U}}(M) \ncong F_{\mathcal{V}}(M)$

for some separable C*-algebra M.

A consequence of the Dow-Shelah result

Theorem (F., 2008)

 $\neg \textit{CH}$ implies there are $\mathcal U$ and $\mathcal V$ such that

 $F_{\mathcal{U}}(M) \ncong F_{\mathcal{V}}(M)$

for every separable C*-algebra M that has an infinite chain of projections.

The remaining results are joint with Bradd Hart and David Sherman

Theorem (FHS, 2009)

Assume CH fails. For a countable metric structure A the following are equivalent.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 1. All ultrapowers of A are isomorphic.
- 2. The theory of A is stable
The remaining results are joint with Bradd Hart and David Sherman

Theorem (FHS, 2009)

Assume CH fails. For a countable metric structure A the following are equivalent.

- 1. All ultrapowers of A are isomorphic.
- 2. The theory of A is stable (in a variant of the Ben Yaacov–Berenstein–Henson–Usvyuatsov's 'logic of metric structures').

For every infinite-dimensional separable C*-algebra M TFAE:

- 1. All ultrapowers of A are isomorphic,
- 2. All $F_{\mathcal{U}}(A)$ are isomorphic,
- 3. CH.

For every infinite-dimensional separable C*-algebra M TFAE:

- 1. All ultrapowers of A are isomorphic,
- 2. All $F_{\mathcal{U}}(A)$ are isomorphic,
- 3. CH.
- 4. All ultrapowers of the unitary group of A are isomorphic.

For every infinite-dimensional separable C*-algebra M TFAE:

- 1. All ultrapowers of A are isomorphic,
- 2. All $F_{\mathcal{U}}(A)$ are isomorphic,
- 3. CH.
- 4. All ultrapowers of the unitary group of A are isomorphic.
- 5. All relative commutants of the unitary group of A in its ultrapowers are isomorphic.

Is anything stable?

Theorem (FHS, 2009)

For every infinite-dimensional separable C*-algebra M TFAE:

- 1. All ultrapowers of A are isomorphic,
- 2. All $F_{\mathcal{U}}(A)$ are isomorphic,
- 3. CH.
- 4. All ultrapowers of the unitary group of A are isomorphic.
- 5. All relative commutants of the unitary group of A in its ultrapowers are isomorphic.

Is anything stable?

Theorem (FHS, 2009)

For every infinite-dimensional separable C*-algebra M TFAE:

- 1. All ultrapowers of A are isomorphic,
- 2. All $F_{\mathcal{U}}(A)$ are isomorphic,
- 3. CH.
- 4. All ultrapowers of the unitary group of A are isomorphic.
- 5. All relative commutants of the unitary group of A in its ultrapowers are isomorphic.

The theory of (discrete) abelian groups is stable (Szmielew, 1955).

Example

Fix *n*. Let τ denote the normalized trace on $M_n(\mathbb{C})$.

II_1 factors

Example

Fix *n*. Let τ denote the normalized trace on $M_n(\mathbb{C})$. The ℓ^2 -norm (Hilbert–Schmidt norm) on $M_n(\mathbb{C})$:

$$\|\boldsymbol{a}\|_2 = \sqrt{\tau(\boldsymbol{a}^*\boldsymbol{a})}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Fix *n*. Let τ denote the normalized trace on $M_n(\mathbb{C})$. The ℓ^2 -norm (Hilbert–Schmidt norm) on $M_n(\mathbb{C})$:

$$\|a\|_2 = \sqrt{\tau(a^*a)}.$$

Definition

A von Neumann algebra $(M, +, \cdot, *, \|\cdot\|)$ is *tracial* if it has a faithful normalized trace τ .

Example

Fix *n*. Let τ denote the normalized trace on $M_n(\mathbb{C})$. The ℓ^2 -norm (Hilbert–Schmidt norm) on $M_n(\mathbb{C})$:

$$\|a\|_2 = \sqrt{\tau(a^*a)}.$$

Definition

A von Neumann algebra $(M, +, \cdot, *, \|\cdot\|)$ is *tracial* if it has a faithful normalized trace τ .

Example $L^{\infty}([0,1],\lambda)$, with $\tau(f) = \int f d\lambda$.

Example

Fix *n*. Let τ denote the normalized trace on $M_n(\mathbb{C})$. The ℓ^2 -norm (Hilbert–Schmidt norm) on $M_n(\mathbb{C})$:

$$\|\boldsymbol{a}\|_2 = \sqrt{\tau(\boldsymbol{a}^*\boldsymbol{a})}.$$

Definition

A von Neumann algebra $(M, +, \cdot, *, \|\cdot\|)$ is *tracial* if it has a faithful normalized trace τ .

Example

$$L^{\infty}([0,1],\lambda)$$
, with $\tau(f) = \int f \, d\lambda$.

Definition

A tracial von Neumann algebra is a *type II*₁ *factor* if its center is trivial and it is infinite-dimensional.

Question (Dusa McDuff, 1970) If M is a II₁ factor, are all

 $M'\cap M^{\mathcal{U}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

isomorphic?

Question (Dusa McDuff, 1970) If M is a II_1 factor, are all

 $M' \cap M^{\mathcal{U}}$

isomorphic?

Theorem (Ge-Hadwin, 2001)

For any separable II₁ factor the Continuum Hypothesis implies all of its ultrapowers are isomorphic, and all of the associated relative commutants are isomorphic.

TFAE for every separable II_1 factor M:

1. all the ultrapowers of M are isomorphic,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

TFAE for every separable II_1 factor M:

- 1. all the ultrapowers of M are isomorphic,
- 2. all the associated relative commutants are isomorphic,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

TFAE for every separable II_1 factor M:

- 1. all the ultrapowers of M are isomorphic,
- 2. all the associated relative commutants are isomorphic,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3. Continuum Hypothesis.

TFAE for every separable II_1 factor M:

- 1. all the ultrapowers of M are isomorphic,
- 2. all the associated relative commutants are isomorphic,
- 3. Continuum Hypothesis.

Non-stability is witnessed by $\varphi(x_1, x_2, y_1, y_2)$:

 $||x_1y_2 - y_2x_1||_2.$

An ultraproduct of $M_n(\mathbb{C})$, for $n \in \mathbb{N}$:

 $\prod_n M_n(\mathbb{C})/c_{\mathcal{U}}.$ n

(ロ)、(型)、(E)、(E)、 E) の(の)

An ultraproduct of $M_n(\mathbb{C})$, for $n \in \mathbb{N}$:

$$\prod_n M_n(\mathbb{C})/c_{\mathcal{U}}.$$

Question (S. Popa, 2008)

Are all ultraproducts of $M_n(\mathbb{C})$, for $n \in \mathbb{N}$, isomorphic?

An ultraproduct of $M_n(\mathbb{C})$, for $n \in \mathbb{N}$:

$$\prod_n M_n(\mathbb{C})/c_{\mathcal{U}}.$$

Question (S. Popa, 2008)

Are all ultraproducts of $M_n(\mathbb{C})$, for $n \in \mathbb{N}$, isomorphic?

Theorem (FHS, 2009)

1. If CH fails, then there are ultrafilters \mathcal{U} and \mathcal{V} such that the ultraproducts of $M_n(\mathbb{C})$ associated to \mathcal{U} and to \mathcal{V} are not isomorphic.

An ultraproduct of $M_n(\mathbb{C})$, for $n \in \mathbb{N}$:

$$\prod_n M_n(\mathbb{C})/c_{\mathcal{U}}.$$

Question (S. Popa, 2008)

Are all ultraproducts of $M_n(\mathbb{C})$, for $n \in \mathbb{N}$, isomorphic?

Theorem (FHS, 2009)

- 1. If CH fails, then there are ultrafilters \mathcal{U} and \mathcal{V} such that the ultraproducts of $M_n(\mathbb{C})$ associated to \mathcal{U} and to \mathcal{V} are not isomorphic.
- If CH holds, then there is an increasing sequence n(i), i ∈ N, such that for any two ultrafilters U and V the ultraproducts of M_{n(i)}(C), i ∈ N associated with U and V are isomorphic.

An ultraproduct of $M_n(\mathbb{C})$, for $n \in \mathbb{N}$:

$$\prod_n M_n(\mathbb{C})/c_{\mathcal{U}}.$$

Question (S. Popa, 2008)

Are all ultraproducts of $M_n(\mathbb{C})$, for $n \in \mathbb{N}$, isomorphic?

Theorem (FHS, 2009)

- 1. If CH fails, then there are ultrafilters \mathcal{U} and \mathcal{V} such that for every increasing sequence n(i), for $i \in \mathbb{N}$, the ultraproducts of $M_{n(i)}(\mathbb{C})$, associated to \mathcal{U} and to \mathcal{V} are not isomorphic.
- If CH holds, then there is an increasing sequence n(i), i ∈ N, such that for any two ultrafilters U and V the ultraproducts of M_{n(i)}(C), i ∈ N associated with U and V are isomorphic.

A stable theory

Theorem (FHS, 2009)

If M is an abelian tracial von Neumann algebra, then all of its ultrapowers are isomorphic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A stable theory

Theorem (FHS, 2009)

If M is an abelian tracial von Neumann algebra, then all of its ultrapowers are isomorphic.

Pf. $M \cong L^{\infty}(X, \mu)$ for some probability measure space (X, μ) .

A stable theory

Theorem (FHS, 2009)

If M is an abelian tracial von Neumann algebra, then all of its ultrapowers are isomorphic.

Pf. $M \cong L^{\infty}(X, \mu)$ for some probability measure space (X, μ) . Abelian tracial von Neumann algebras \Leftrightarrow Probability measure algebras.

Stability

Lemma

If \mathfrak{A} is a separable atomless measure algebra then all of its ultrapowers are isomorphic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stability reduces to Maharam's theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

If \mathfrak{A} is a separable atomless measure algebra then all of its ultrapowers are isomorphic.

Stability reduces to Maharam's theorem

Lemma

If \mathfrak{A} is a separable atomless measure algebra then all of its ultrapowers are isomorphic.

Corollary (Berenstein-Ben Yaacov)

The theory of probability measure algebras is stable.

Stability reduces to Maharam's theorem

Lemma

If \mathfrak{A} is a separable atomless measure algebra then all of its ultrapowers are isomorphic.

Corollary (Berenstein-Ben Yaacov)

The theory of probability measure algebras is stable.

Pf. Immediate by the above lemma and the FHS characterization of stability. \Box

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Assume CH fails. If A is a countable structure with unstable theory, how many nonisomorphic ultrapowers does it have?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question

Assume CH fails. If A is a countable structure with unstable theory, how many nonisomorphic ultrapowers does it have? (Best lower bound:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Assume CH fails. If A is a countable structure with unstable theory, how many nonisomorphic ultrapowers does it have? (Best lower bound: as many as uncountable cardinals $\leq 2^{\aleph_0}$.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Assume CH fails. If A is a countable structure with unstable theory, how many nonisomorphic ultrapowers does it have? (Best lower bound: as many as uncountable cardinals $\leq 2^{\aleph_0}$. I.e., 2.)

Question

Assume CH fails. If A is a countable structure with unstable theory, how many nonisomorphic ultrapowers does it have? (Best lower bound: as many as uncountable cardinals $\leq 2^{\aleph_0}$. I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005)

If CH fails then there are $2^{2^{\aleph_0}}$ nonisomorphic utrapowers of $(\mathbb{N}, <)$.

Question

Assume CH fails. If A is a countable structure with unstable theory, how many nonisomorphic ultrapowers does it have? (Best lower bound: as many as uncountable cardinals $\leq 2^{\aleph_0}$. I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005) If CH fails then there are $2^{2^{\aleph_0}}$ nonisomorphic utrapowers of $(\mathbb{N}, <)$.

Question (Sherman for separable II₁ factors)

Assume A is a countable model. Is there an automorphism of $A^{\mathcal{U}}$ that does not lift to an endomorphism of $A^{\mathbb{N}}$?

Question

Assume CH fails. If A is a countable structure with unstable theory, how many nonisomorphic ultrapowers does it have? (Best lower bound: as many as uncountable cardinals $\leq 2^{\aleph_0}$. I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005) If CH fails then there are $2^{2^{\aleph_0}}$ nonisomorphic utrapowers of $(\mathbb{N}, <)$.

Question (Sherman for separable II₁ factors)

Assume A is a countable model. Is there an automorphism of $A^{\mathcal{U}}$ that does not lift to an endomorphism of $A^{\mathbb{N}}$? CH implies 'yes.'
Open problems

Question

Assume CH fails. If A is a countable structure with unstable theory, how many nonisomorphic ultrapowers does it have? (Best lower bound: as many as uncountable cardinals $\leq 2^{\aleph_0}$. I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005) If CH fails then there are $2^{2^{\aleph_0}}$ nonisomorphic utrapowers of $(\mathbb{N}, <)$.

Question (Sherman for separable II₁ factors)

Assume A is a countable model. Is there an automorphism of $A^{\mathcal{U}}$ that does not lift to an endomorphism of $A^{\mathbb{N}}$? CH implies 'yes.'

Question

Does CH imply that all tracial ultraproducts $\prod_{\mathcal{U}} M_n(\mathbb{C})$ are isomorphic?

Open problems

Question

Assume CH fails. If A is a countable structure with unstable theory, how many nonisomorphic ultrapowers does it have? (Best lower bound: as many as uncountable cardinals $\leq 2^{\aleph_0}$. I.e., 2.)

Theorem (Kramer–Shelah–Tent–Thomas, 2005) If CH fails then there are $2^{2^{\aleph_0}}$ nonisomorphic utrapowers of $(\mathbb{N}, <)$.

Question (Sherman for separable II₁ factors)

Assume A is a countable model. Is there an automorphism of $A^{\mathcal{U}}$ that does not lift to an endomorphism of $A^{\mathbb{N}}$? CH implies 'yes.'

Question

Does CH imply that all tracial ultraproducts $\prod_{\mathcal{U}} M_n(\mathbb{C})$ are isomorphic? I.e., do their theories converge?